首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
自驱动微纳米马达由于其自主运动特性,在药物运输、生物传感、细胞分离、微手术和环境治理等方面有着重要的应用前景.本文通过分析自驱动微纳米马达的气泡反冲和自泳等各种驱动机理,指出设计制备自驱动微纳米马达的关键是在微纳米粒子周围构建非对称场;重点综述了自驱动微纳米马达从双面神结构和多层管状结构到各向异性单组分结构和各向同性粒子的结构演变与简化历程,并对其发展和应用前景做出了展望.  相似文献   

2.
陈勇  周宁  杜海莲  冯亚兵  赵玉芬 《科学》2001,53(5):13-13
世界上最小的马达在哪里?就在我们每个人的身体里,它被称为"分子马达"(molecular motor).分子马达是生物体内的一类蛋白质,就像传统的马达一样,它们"燃烧"燃料,做出特定的运动,完成特定的功能.它们是生物体内的"化学能与机械能之间的转换器".某些分子马达也有定子、转子,只不过它们的尺寸都非常小,以纳米为单位,所以被称为世界上最小的马达."生命在于运动",这对于分子马达来说最确切不过了.每个生物体内都有成千上万的分子马达,光合作用需要分子马达,细胞的分裂需要分子马达,肌肉运动也是分子马达在起作用生物体内分子马达无处不在.  相似文献   

3.
纳米马达是一种将其他形式能量转化为机械能从而产生定向运动的纳米机器。文章概要介绍了不同种类纳米马达驱动 机理的研究现状,简略分析了纳米马达在实际应用中存在的困难,并对未来的发展趋势进行初步展望。  相似文献   

4.
从整个肌球蛋白分子马达系统的结构特点和实验现象出发, 利用电偶极子模型构建一个势能函数, 应用朗之万方程讨论其定向运动行为. 通过调整分子马达电偶极子参数, 模拟得到了肌球蛋白Ⅵ分子马达系综沿微丝负向的平均位移和平均粒子流, 并讨论了负载力和马达偶极子转动速率对肌球蛋白Ⅵ系综运动的影响. 研究发现, 分子马达的运动方向会随马达偶极子旋转方向的不同而变化, 马达偶极子逆时针旋转时分子马达向微丝负端运动(此时对应肌球蛋白Ⅵ), 顺时针旋转时分子马达向正端运动(此时对应肌球蛋白Ⅴ); 当负载力很大时, 肌球蛋白Ⅵ甚至会向微丝的正端运动.  相似文献   

5.
生物结构自组装   总被引:3,自引:0,他引:3  
张先恩 《科学通报》2009,54(18):2682-2690
生物大分子、复合物分子机器、细胞器、完整细胞乃至生命个体的形成, 自组装贯穿其中, 并有极其复杂的调控机制. 本文归纳分析了生物结构自组装的特点及其物理、化学和几何学原理, 并以新生肽链折叠和染色体折叠浓缩为例描述自组装的生物调控原理. 采用自组装策略, 已经开发了许多生物纳米功能结构, 如DNA平面和立体结构、DNA马达、蛋白纳米线、荧光双分子互补系统等. 研究复杂生物体系的自组装极具挑战, 可使我们更接近生命的本质, 还将为纳米科学技术和仿生学提供许多启示.  相似文献   

6.
多物理场驱动微纳马达是一种介于纳米和微米尺度的致动器,它能够将化学能、磁能、电能、光能、热能以及超声能转换为机械能,从而实现其在靶向药物运输、粒子离散、生物传感、仿生制造以及环境修复等领域的应用.本文评述了近年来我国微纳马达运动控制领域重要的研究进展和代表性成果,以及微纳马达在各领域的应用研究,阐述了微纳马达当前存在的关键性问题,并探讨了微纳马达未来的应用前景及发展方向和趋势,为深入开展微纳马达的科学研究和工程化应用提供一定的借鉴和参考.  相似文献   

7.
纳米生物技术   总被引:8,自引:0,他引:8  
靳刚  应佩青 《自然杂志》2001,23(4):211-213
纳米生物技术是纳米技术和生物技术相结合的产物,本文主要从生物芯片、分子马达、纳米探针、纳米生物材料以及其他纳米生物技术等方面介绍了此领域里的重要发展.  相似文献   

8.
微纳马达是指在外界各种能量(光、电、磁、热、化学能等)的刺激下,具有运动性能(包括转动、翻转、梭动、收缩、聚集等)且尺寸为微米或纳米级的微观器件.相对于传统的微纳颗粒而言,微纳马达的可控运行的特性使之在应对未来生物临床、环境治理、微纳器械、微纳加工等领域的实际问题时具备明显优势.光驱动微纳马达作为本领域十分重要的一种类型,由于具有运动远程可控的独特性能而备受关注.本文首先对微纳马达进行了简单的介绍,然后详细地介绍光驱动微纳马达设计的基本原则及驱动机理、光驱动马达的分类、运动特征以及潜在应用,最后对光驱动微纳马达目前面临的挑战以及未来的发展进行了评述.  相似文献   

9.
<正>DNA分子是生物体存储和传递遗传信息的载体,具有进化产生的高效性和稳定性. DNA分子互补配对的可预测性和可编程性使其成为极具潜力的纳米构筑材料.特别地,近年来DNA纳米技术的发展为纳米科学和纳米技术带来了新的生长点,为构筑新型纳米组装体、超分子结构和分子机器提供了前所未有的强有力工具.早期DNA纳米技术集中于DNA结构的设计和构建.从最初发展的利用交叉结模块自下而上的层次构筑方案,到基于一条长单链DNA折叠的DNA折纸术的  相似文献   

10.
新近,美国康乃尔大学科研人员制造出400个微型马达,有5个竟被发动,以8转/秒的速度旋转起来,一次可连续运转2小时.据科研人员介绍,这种微型马达的镍制螺旋桨长度有750纳米(1纳米等于1米的10亿分之一,相当于头发的8万分之一),直径约150纳米,是名副其实的纳米马达.所以这些马达即使与我们面对面,我们也视而不见.那些奇观是科学家在高倍显微镜帮助下拍摄到的.科研人员还有幸目睹到一颗小尘埃被旋转的螺旋桨吸入,接着被甩出来的镜头.科研人员认为,此项实验将为纳米科技、纳米电脑走向社会;将为比人体红血球还要小的纳米机器人进入人体,直接打通脑血栓,清除心脏动脉脂肪沉积物,进入人体全身检查等治病救人工作,大开方便之门.  相似文献   

11.
郭晓强 《自然杂志》2019,41(1):56-62
生命在于运动,因此运动对生命而言具有至关重要的意义。肌球蛋白、动力蛋白和驱动蛋白是三种重要的分子马达,负责肌肉细胞和非肌肉细胞的运动。肌球蛋白与肌动蛋白间滑动构成肌肉收缩的基础;动力蛋白和驱动蛋白沿微管运动在细胞内物质运输,有丝分裂、减数分裂中染色体分离过程和细胞骨架动力学方面发挥重要作用。分子马达突变或缺陷可导致遗传性神经病变、严重型肌病和呼吸道慢性感染等发生。因此,分子马达运动的相关研究成果为多种疾病治疗提供新的策略。文章回顾了分子马达的研究历程、生物学作用和应用意义。  相似文献   

12.
能干的小引擎——纳米马达   总被引:1,自引:0,他引:1       下载免费PDF全文
王志松 《自然杂志》2006,28(3):160-163
在分子水平上实现马达功能,即纳米尺度上的有用功输出和精确运输,曾是R.Feynman的梦想,也是当前纳米科学面临的挑战。本文简介纳米马达研究的现状,并指出若干尚待解决的重大科学问题。  相似文献   

13.
基于泳机理自驱动的微/纳马达动力学现象十分丰富,相关理论研究属于软凝聚态、统计物理和纳米科技交叉学科新兴的前沿领域.对自驱动马达进行模型设计、探索马达与复杂环境相互作用,具有潜在的应用意义.本文首先介绍了一种高效的介观模拟方法——多粒子碰撞动力学基本方法,以及结合了分子动力学和化学反应的联合算法;接着简要描述了马达基于泳的自驱动机理,并简单回顾了马达数值模拟研究的相关进展;最后概述了应用多粒子碰撞动力学方法对自驱动马达研究的结果,包括广泛地建模与设计,以及马达与复杂活化环境相互作用动力学.  相似文献   

14.
王慧 《自然与人》2011,(3):26-28
分子机器种类繁多 一个小小的生物细胞中,居然充斥着种类繁多的纳米级分子机器。它们和人类制造的机器一样,由许多部件相互配合,行使着特定的功能。  相似文献   

15.
采用分子动力学方法模拟了变截面微纳米通道内聚乙烯分子的注射过程, 分析了微纳米通道截面结构及外加作用力对注射过程中聚乙烯分子流变和结构特性的影响. 研究结果表明:注射流动过程中, 通道壁面附近存在粒子吸附层, 且吸附层厚度随通道锥面倾角增大而增大;聚乙烯分子链的注射距离随锥面倾角增大而减小、随外加作用力增大而增大; 在锥面倾角为α=45°的通道中聚乙烯分子均匀填充整个通道, 且沿流动方向上出现单轴拉伸现象, 在较大作用力情况下, 该拉伸更为显著, 使得注射过程更容易完成.  相似文献   

16.
靳刚  应佩青 《自然杂志》2001,23(4):211-214
纳米生物技术是纳米技术和生物技术相结合的产物,本文主要人生物芯片、分子马达、纳米探针、纳米生物材料以及其他纳米生物技术等方面介绍了此领域里的重要发展。  相似文献   

17.
正微纳结构化材料是指在功能材料中引入微纳米尺度结构,以提升功能材料性能和拓展其新功能.功能结构的微纳米化不仅意味着能源与原材料的节省,而且带来多功能的高度集成和生产成本的大大降低.实现材料微纳结构化的基础是先进的微纳米加工技术,从晶体管到集成电路,从微电子到微机械与微流体,从微米技术到纳米技术,微纳米加工技术获得  相似文献   

18.
肌肉收缩中肌球蛋白分子马达的微观循环过程动态力学原理尚未揭示清楚,从影响肌球蛋白分子马达的vander Waals力、Casimir力、静电力及布朗力耦合作用入手,研究了肌球蛋白分子马达向肌动蛋白丝接近过程中的动态力学行为,构建了相应的动力学模型,并通过Monte Carlo方法对随机动力学方程进行了模拟计算.结果表明,接近过程中当分子马达与肌动蛋白丝表面距离大于3nm时,起主要作用的力为Casimir力和静电力;当距离小于3nm时,vander Waals力和静电力使分子马达向肌动蛋白丝轨道快速接近.通过比较几个力的影响发现,接近过程中两结合位点的静电力起主导作用,计算结果与肌球蛋白分子马达实验结果符合较好.  相似文献   

19.
葛志磊  樊春海  YAN Hao 《科学通报》2014,59(2):146-157
DNA纳米技术是一种自下而上的分子自组装模式,由分子构造为起点基于核酸分子的物理和化学性质自发地形成稳定结构,遵循严格的核酸碱基配对原则,使得DNA被用作构建结构的材料基元而不是在活细胞中那样作为遗传信息的载体.通过合理地设计碱基链来达成精密控制的纳米级复杂结构的目的,研究人员在这个领域已经建立起诸多二维、三维的复杂纳米结构以及各种具有不同功能的分子机器,比如DNA计算机.本文总结了近年来DNA纳米自组装方面取得的最新进展,同时介绍DNA纳米自组装的几种不同组装方法,并对其相关应用进行了展望.  相似文献   

20.
超声、磁共振多功能微气泡造影剂的制备和应用   总被引:2,自引:0,他引:2  
杨芳  李熠鑫  陈忠平  顾宁 《科学通报》2009,54(9):1181-1186
随着包膜微气泡材料和制备技术的发展, 微气泡超声造影剂不仅用于超声成像诊断, 而且在分子成像、药物传输及靶向治疗等多个领域得到广泛的研究与应用. 实验制备了膜壳装载Fe3O4纳米颗粒、中心包裹氮气的聚合物微气泡造影剂, 体外超声成像(US)显影实验发现该微气泡具有良好的超声图像增强作用. 利用包膜微气泡在超声场作用下的振动模型研究其动力学行为发现, 膜壳中包裹的Fe3O4纳米颗粒在一定浓度范围内能增加微气泡的膜壳散射截面, 增强超声波的背向散射强度, 从而显著增强超声图像的显影效果; 当超过一定Fe3O4纳米颗粒浓度则会导致微气泡膜壳散射截面减小, 从而降低超声图像增强效果. 另一方面体外磁共振成像(MRI)显影实验证明, 随着膜壳中Fe3O4纳米颗粒含量的增加, MRI增强效果亦增加. 因此为了制备US和MRI双重显影增强的微气泡造影剂, 控制磁性纳米颗粒在微气泡膜壳中的包裹量十分重要.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号