首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
碳纳米管和石墨烯作为近年来兴起的新型纳米炭材料,以其独特的一维/二维结构形态和卓越的物理性能已引起人们广泛关注.将纳米炭材料与环氧树脂进行复合制得纳米炭/环氧树脂复合材料,可以赋予材料更为优异的力学、电学、热学等综合性能.纳米炭材料的加入可以在复合材料内部引入更多的界面,造成显著的能量耗散,从而使得纳米复合材料在具有轻质高强特性的同时,兼具优异的黏弹阻尼性能,对于延长材料使用寿命、提高材料减震降噪性能等方面具有极为重要的意义.本文主要论述了纳米炭/环氧树脂复合材料的黏弹阻尼性能以及近期的相关研究进展,重点阐述碳纳米管、石墨烯及其复合材料的阻尼作用机理,介绍了纳米复合材料黏弹阻尼性能的测试方法,指出纳米炭/环氧树脂阻尼复合材料领域存在的主要问题,并对其应用前景进行了展望.  相似文献   

2.
高含量纳米碳复合材料能够更好地体现碳纳米管等纳米材料自身的性质.借助自然材料的结构设计和整合思想,使得高含量的纳米碳组装结构体及其复合材料具有结构的合理化、性能的优异化、材料的可控化和应用的高效化,这种方法也将成为未来纳米复合材料发展的重要方向.本文主要介绍了高含量仿生纳米碳复合材料加工过程、结构和界面的仿生设计思想,以及其在仿生智能驱动中的应用进展.  相似文献   

3.
柔性电子器件日益流行,给人们的日常生活带来了巨大的变革,同时也激发了柔性储能器件的设计和研制,其中,柔性锂离子电池引起了广泛的关注.为了获得柔性储能器件,首先需要制备柔性电极,即要求在反复变形状态下,电极能够保持优异的力学和电学性能.碳材料具有优异的力学性能和导电性,不仅能够直接制备柔性电极,还能够与活性材料复合,作为基底提供自支撑的导电网络.但是"刚性"的活性材料与"柔性"基底从力学和形态本质上均不匹配,二者的复合、组装、制备方法及其结合强度直接影响电池的电化学性能.本文综述了近年来碳纳米管、碳纳米线、石墨烯、石墨炔及碳布等碳基柔性电极的发展情况,着重分析了自支撑柔性电极的制备方法、结构特征与电化学性能的关系,同时简要总结了目前几种典型结构的柔性锂离子电池,探讨了碳材料柔性电极面临的挑战,并对其未来发展方向进行了展望.  相似文献   

4.
石墨烯具有独特的二维纳米结构、高比表面积和优异的电化学性能,而且变形后仍保持器件的原始性能。分析了石墨烯柔性超级电容器的工作原理,研究了以石墨烯为电极材料的柔性超级电容器的变形特性,其变形类型可由小角度弯曲、卷曲和拉伸扩展至任意静态变形,甚至动态变形。最后对石墨烯柔性电容器在便携式电子器件中的应用进行了展望。  相似文献   

5.
电子与通讯设备广泛地应用于工业、商业、科学研究以及军事等领域,电磁辐射对人体健康造成不良的影响,使得电磁屏蔽一直是现代社会需要重视的一大问题,因此也催生了对不同类型的电磁屏蔽材料的制备与性能的研究.与传统的金属电磁屏蔽材料相比,以碳材料作为填料的高分子复合材料在电磁屏蔽领域有着自己独特的优势,包括重量轻、耐腐蚀、易加工、具有柔性以及可吸收频率范围广.石墨烯作为一种新型的二维纳米碳材料,具有极其优异的电学、力学和热力学性能,这些优异的性能使得石墨烯在与高分子材料形成复合材料后具有极佳的作为电磁屏蔽材料的潜质.此外,在航空航天、武器装备、军事防护、汽车工业以及微电子业中,对所使用的电磁屏蔽材料的热稳定性、力学性能也都有更高的要求.石墨烯-高分子复合材料比其他的含碳复合材料具有更大的优势来满足这些挑战.本文对应用于电磁屏蔽领域的石墨烯-高分子复合材料中石墨烯的制备方式进行分类,总结了目前此类复合材料的电磁屏蔽效能.  相似文献   

6.
赵梦强  张强  贾希来  黄佳琦  张英皓  魏飞 《科学通报》2010,55(12):1194-1194
将一维的碳纳米管与二维的片层材料组合形成多级有序的三维纳米结构材料, 可获得许多奇特的新性能. 目前将碳纳米管分散在基体中形成了多种复合材料, 发现其力学、电学、磁学、热学以及输运性能都呈现了显著的增强, 但是在基体中均匀地分散碳纳米管往往是材料组装过程中的核心问题. 发展有效可控的一维/二维材料有序组装方法是获得高性能材料的关键. 碳纳米管生长结束后, 在表面活性剂、生物大分子辅助下超声、剪切、搅拌等是其分散常用的方法. 如果能利用碳纳米管生长过程中借助特殊结构的催化剂及工艺对碳纳米管的排列及分散进行原位控制, 这样就有望一步获得碳纳米管高度分散、多级有序、高性能的三维纳米复合材料. .....  相似文献   

7.
石墨烯由于独特的单原子层二维结构和高比表面积等优异性能而被用作选择性分离膜和吸附剂,在水处理领域具有潜在的应用前景.本文综述了石墨烯纳米多孔膜和层状堆叠的氧化石墨烯渗透膜对气体、水及离子的传质行为.纳米多孔膜因其制备技术和不成熟的打孔技术等原因而具有一定局限性;而层状渗透膜由于制备方法简单、成本低、高通透性和高选择性等优点,在水净化领域具有广阔的应用空间.进一步综述了石墨烯吸附材料对水中重金属离子、染料和有机污染物的吸附行为,分析了石墨烯材料表面官能团与污染物的相互作用机理.最后展望了石墨烯材料在膜分离、海水淡化和污染物去除等环境应用中的机遇和挑战.  相似文献   

8.
石墨烯——最薄的二维碳材料,因其具有卓越的机械、光学、电子和热性能,使其在复合材料、电子器件、能源储存和吸附分离等许多领域都具有广泛的应用.石墨烯筛(graphene nanomesh)作为一种在石墨烯片层引入纳米孔的多孔石墨烯,除了具有石墨烯本身固有的特性之外,其可调控的孔结构设计为石墨烯筛功能性应用提供了新的选择.本文综述了常见的石墨烯筛合成方法并展望了其未来发展前景.  相似文献   

9.
本研究通过化学自组装和原位热解成功构建了锚定超细Fe3O4纳米颗粒的磁功能化石墨烯气凝胶复合材料.分别采用X射线衍射(XRD)和X射线光电子能谱(XPS)表征复合材料的晶体结构及元素组成;采用红外及拉曼光谱分析表征其化学结构、石墨化程度和结构缺陷;通过扫描电子显微镜(SEM)和透射电子显微镜(TEM)对复合材料的形貌及微观结构进行测试.实验结果表明, 600℃煅烧温度、填充量仅为5wt%(质量百分比)的复合材料表现出最优异的性能,最小反射损耗(RLmin)和有效吸收带宽(EAB)均优于目前报道的大多数吸波材料.电磁分析结果表明,优异的微波吸收性能归因于复合材料增强的协同效应和独特的三维结构.  相似文献   

10.
编者按     
<正>纳米碳材料是过去30年间最为活跃的研究领域之一.富勒烯、碳纳米管、石墨烯等一系列碳质新材料先后被发现,带来了丰富的新结构、新现象、新物理和新应用,掀起并带动了持续至今的纳米科技研究热潮.纳米碳材料之所以受到广泛关注是因为其特有的几何结构、以sp2杂化为主的成键方式以及由此带来的优异的电学、力学、热学、光学等特性.例如,碳纳米管和石墨烯分别是已知最细和最薄的材料,具有远高于硅的载流子迁移率、最高的热导率和力学强度,以及优异的柔韧性.纳米碳材料的性能对结构变化极其敏感,如手性  相似文献   

11.
传统印刷技术与微电子制造的交叉技术——印刷电子技术的发展得益于微纳米材料制备技术的成熟.二维纳米碳材料石墨烯由于其独特的结构和突出的性能,可与传统金属或高聚物材料共同作为导电墨水主要导电组分.本文讨论了目前石墨烯导电墨水制备中的关键问题、不同制备方案及其优劣之处;评述了石墨烯导电墨水印刷工艺的研究进展,包括传统印刷技术和新型印刷技术中的应用与难点.最后,总结了石墨烯导电墨水在柔性功能器件(基本电路元件、能量存储和力学/化学传感器件等)中的应用现状.  相似文献   

12.
六方氮化硼是一种与石墨烯结构类似的二维层状宽带隙绝缘材料,具有各种优异的物理性质.例如,它具有优异的力学性质和化学、热稳定性,在非线性光学领域、紫外激光器以及保护层材料方面具有潜在的应用.另外,由于其表面具有原子级平整,不存在悬挂键和陷阱电荷,使其成为石墨烯电学器件的一种优异的介电材料.它还可与其他二维材料组成平面/垂直结构的异质结,展现出各种新奇的性能和在电子器件方面的潜在应用.如何可控制备大面积、高质量的六方氮化硼是目前研究的核心科学问题.本文主要综述了通过化学气相沉积法制备六方氮化硼的一系列工作,其中包括最新的研究进展,对反应前驱体和基底的选择做了详细的介绍和讨论,并展望了该领域的发展前景.  相似文献   

13.
<正>二维材料具有诸多令人瞩目的物理、化学性质,使其成为目前国际材料科学研究的前沿焦点.自2004年被首次制得以来,石墨烯在电学、光学、热学和力学等方面均已展现出十分优异的性能.由于石墨烯卓越的性能源于量子限域效应,研究者随即开始探索其他性能出众的新型二维原子晶体材料,包括六方氮化硼、过渡金属二硫族化合物、黑磷和过渡金属碳化物等.他们性质多样且互补,  相似文献   

14.
金属衬底上石墨烯生长机理研究进展   总被引:1,自引:0,他引:1  
石墨烯作为一种新型的二维碳材料,在高性能纳米电子器件、复合材料、场发射材料、气体传感器及能量存储等领域具有非常重要的应用前景.然而,大规模可控合成高质量的石墨烯仍然面临巨大的挑战,其中比较有效的方法之一是在金属衬底上生长石墨烯.本文总结了近年来在金属衬底上生长石墨烯的机理研究方面取得的重要进展,从初始阶段、成核阶段、长大过程3个方面进行了介绍,最后还介绍了氢气在石墨烯生长过程中所起的重要作用,以期对石墨烯生长机理的深入研究及大规模可控制备提供帮助.  相似文献   

15.
陈斌  张莹莹 《科学通报》2023,(10):1144-1146
<正>柔性可拉伸电子器件是指可通过自身变形而适应复杂外形并实现传感、供能、通讯等功能的电子元件,在健康管理、智慧医疗、人机交互等领域具有显著的潜力,备受科学界和工业界关注.通常,电学活性材料需要被封装起来以隔绝空气中水、氧等物质的影响,从而使得电子器件具有高稳定性和长寿命.对于柔性可拉伸电子器件,如何选择合适的材料进行封装仍是一个重要的挑战,  相似文献   

16.
以化学气相沉积(CVD)法生长的石墨烯作为基体,采用原位复合方法制备出三维石墨烯/碳纳米管纳米复合材料.使用扫描电子显微镜(SEM)和透射电子显微镜(TEM)对复合材料的微观形貌和结构进行表征,并运用循环伏安、交流阻抗等技术对纳米复合材料的超级电容性能进行研究.实验结果表明,石墨烯/碳纳米管纳米复合材料作为超级电容器电极材料,在1.5 mol/L Li_2SO_4体系中的最大比电容为289.8 F/g,经2000次循环后,其容量保持92%,表现出优异的比容量和循环稳定性.  相似文献   

17.
刘毅  姜忠义 《科学通报》2024,(13):1666-1668
<正>自支撑型薄膜材料因其脱离衬底束缚而展现出物化性质均一、便于成型组装、避免界面缺陷等优异特性,在柔性电子器件、智能传感系统、能量储存转换、化学分离等领域表现出巨大应用潜力.目前已开发出的自支撑型薄膜的制备方法包括化学刻蚀、物理/机械剥离、界面合成、原位转化等.作为自支撑型薄膜材料的重要成员,自支撑型氧化物薄膜材料的主要制备方法为湿法制备,即基于水溶性牺牲层的外延生长、剥离和转移技术.  相似文献   

18.
宏观超分子组装的研究对象是表面修饰有大量超分子识别基团的10μm以上的宏观构筑基元,以及它们之间基于超分子多重相互作用的碰撞、识别和组装的过程,它是超分子化学的新兴研究方向,为体相超分子材料的制备提供了新的思路.宏观构筑基元的表面柔顺性是决定构筑基元间能否通过多重相互作用,增强相互作用,实现组装的关键要素之一.本文从界面间相互作用出发,通过交替层状自组装方法,在刚性聚二甲基硅氧烷(PDMS)构筑基元表面分别构筑不同层数的聚电解质多层膜,以调控宏观构筑基元的表面柔顺性,并研究聚电解质多层膜层数对于宏观构筑基元组装行为的影响.通过研究在水中叠加组装的时间与聚电解质多层膜层数的关系,我们发现当构筑基元表面修饰的聚电解质多层膜层数较少时,经过长时间叠加也不能发生组装;随着构筑基元表面修饰的聚电解质多层膜层数的增加,可以在较短的时间内叠加实现组装.同时对构筑基元之间的相互作用力随时间的变化进行了原位测量,其力值与上述组装行为一致.本工作验证了"具有高柔性表面是宏观超分子组装的设计原则",说明通过调控构筑基元表面柔顺性可以调控其宏观组装行为.  相似文献   

19.
传统的电子器件都是基于无机半导体材料(例如硅),由于其硬、脆的性质使电子器件不能变形,无法满足下一代电子器件在形状可变性尤其是人体适用性上的需求.为突破这一瓶颈,近年来基于无机半导体材料的可延展柔性电子器件凭借其优异的适应变形的能力(可弯曲、扭转、伸缩等)极大拓展了传统无机电子器件的应用范围,备受学术界和电子产业界的瞩目.这种具有可延展柔性的电子器件主要是通过力学结构设计的方法,将无机半导体电子器件置于柔性基体上以实现整体的可弯曲及可延展.本文综述了近年来可延展柔性无机电子器件的结构设计发展,主要针对两类主要的可延展柔性结构:波纹结构和岛桥结构,对其力学设计原理和实验结果进行综述,不仅揭示了其变形机理,更重要的是为优化结构设计提供了理论依据.  相似文献   

20.
石墨烯及氧化石墨烯材料具有良好的物理化学性质、巨大的比表面积,使其适合成为水处理中的吸附剂用于污染物的去除.石墨烯基金属氧化物纳米材料,兼具石墨烯和金属氧化物纳米粒子的固有特性,金属氧化物纳米粒子的存在不但阻止石墨烯的团聚,石墨烯基材料也进一步防止了纳米粒子的凝聚,两者共存产生协同效应,使复合材料具有更大的比表面积和吸附效能用于污染物的去除.本文综述了用于环境中污染物去除的石墨烯基金属氧化物的种类、不同复合材料的性能以及复合材料对水体中重金属离子、有机污染物的吸附性能等,探讨污染物去除机理,并进一步展望适合于不同种类污染物去除的石墨烯基金属氧化物的结构性能特点.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号