共查询到20条相似文献,搜索用时 10 毫秒
1.
以拟南芥WDL3RNA干扰株系(WDL3RNAi)和Tubulin5A-YFP植株等为材料,从叶片的失水率、气孔开度、保卫细胞微管骨架动态排布以及Ca~(2+)流动等不同角度探究在脱落酸(abscisic acid, ABA)诱导的气孔关闭信号通路中,微管结合蛋白WDL3与微管骨架以及Ca~(2+)之间的功能关系,深入了解气孔运动机理.结果表明:(1)相同条件下,WDL3RNAi的叶片蒸腾速率明显慢于野生型.(2)气孔开度实验中,WDL3RNAi对ABA信号比野生型更敏感,气孔关闭更快;微管稳定剂紫杉醇(Paclitaxel)可部分阻碍ABA的作用,微管解聚剂黄草消(Oryzalin)则进一步促进ABA诱导的气孔关闭,但WDL3 RNAi与野生型之间仍存在显著差异;激光共聚焦扫描显微镜观察发现, ABA条件下WDL3 RNAi保卫细胞内微管解聚明显加快,微管成束程度(bundling)显著降低.(3)胞内Ca~(2+)螯合剂BAPTA与ABA共同处理,野生型和WDL3RNAi的气孔关闭均受到不同程度的抑制,关闭减缓,处理前后差异显著.亚细胞结构观察发现, BAPTA阻碍了ABA引起的保卫细胞微管解聚,但WDL3 RNAi与野生型相比,依然维持相对较高的微管解聚比例.此外,非损伤微测技术检测发现,ABA引起的保卫细胞Ca~(2+)内流在WDL3RNAi中较野生型的流速更快,流量加大,显示Ca~(2+)在该信号通路中具有重要作用.综上实验结果表明,微管结合蛋白WDL3通过与微管骨架及Ca~(2+)相互作用参与ABA诱导的气孔关闭过程. 相似文献
2.
拟南芥保卫细胞微管骨架的重排参与NO诱导的气孔关闭 总被引:3,自引:0,他引:3
以GFP:α-tubulin-6转基因拟南芥为材料, 利用药理学实验及激光扫描共聚焦显微技术研究了微管骨架在NO诱导气孔关闭过程中的动态变化及其可能的调控机制. 结果表明: (ⅰ) 微管特异性抑制剂长春花碱和NO供体SNP均能诱导气孔关闭, 并且长春花碱能加强SNP对气孔开度的抑制作用, 而微管稳定剂紫杉醇则部分抑制了NO对气孔关闭的诱导作用; (ⅱ) 开放气孔保卫细胞中, 大量周质微管从保卫细胞的背壁向腹壁呈辐射状整齐规则地排布, 并且几乎所有微管纤维都与保卫细胞腹壁成90°垂直; (ⅲ) 同一条件下保卫细胞经外源NO供体SNP光下处理30 min, 保卫细胞内整齐的辐射状微管逐步散乱, 微管部分解聚, 纤维数量减少, 部分交错扭曲, 排布方式也由与腹壁垂直转变为倾斜, 说明微管骨架可能参与了NO诱导的气孔关闭; (ⅳ) 进一步研究发现, 胞内Ca2+螯合剂BAPTA-AM可以大幅度削弱由NO诱导的气孔关闭作用, 而对长春花碱诱导的气孔关闭无明显影响; 开放气孔的保卫细胞经SNP处理后, 再施加BAPTA-AM, 散乱的微管骨架排布随处理时间延长逐步趋于正常, 到30 min时基本恢复成辐射状, 与对照相比无明显区别, 表明在NO对微管排布的调节机制中有Ca2+参与. 综合以上结果推测, 在NO调控的气孔运动中, NO可能是通过调节胞内Ca2+来促进微管骨架系统的重排, 进而影响气孔的开关运动. 相似文献
3.
《科学通报》2016,(34)
动物异三聚体G蛋白由α,β和γ3个亚基组成,通过G蛋白偶联受体(GPCR)感受外部刺激将信号转化为离子通道、酶和其他作用蛋白进而影响一系列的细胞行为.近10年对模式植物水稻(Oryza sativa)和拟南芥(Arabidopsis thaliana)G蛋白的研究发现了植物有别于动物G蛋白信号传导途径的新机理.植物G蛋白与动物一样也含有α,β和γ3个亚基,但是植物Ga亚基能自发地进行GTP与GDP的交换,使得G蛋白能够自我激活,这也使得植物不需要所以也就不存在GPCR.此外,植物还有不同于动物的大型Gα亚基和非典型Gγ亚基.水稻非典型Gγ亚基表现出C端抑制N端的自我抑制机制,并显著影响产量性状.本文着重介绍模式植物拟南芥和水稻G蛋白信号调控、效应和功能的相关研究进展,总结植物与动物G蛋白信号传导的异同,讨论通过G蛋白提高农作物产量的可能性. 相似文献
4.
5.
一氧化碳(CO)是哺乳动物中新发现的一种重要的生物活性/信号分子, 其生物学效应往往通过一氧化氮(NO)和环鸟苷酸(cGMP)信号介导. 本研究发现, 可引起蚕豆叶片气孔关闭的ABA处理能诱导蚕豆叶片CO释放的增加以及CO合成酶血红素加氧酶(HO)活性的提高; 同时, ABA诱导的蚕豆气孔关闭也可以被CO合成酶抑制剂ZnPP和CO/NO清除剂血红蛋白(Hb)部分阻断. 进一步的研究表明, 外源添加CO供体高铁血红素(Hematin)和CO水溶液不仅能促进CO的释放, 还能以依赖于时间进程的形式诱导蚕豆气孔的关闭, 后者与NO供体SNP处理的结果相类似; NO合成酶硝酸还原酶(NR)的抑制剂钨酸钠(Tungstate), NO专一性清除剂cPTIO, ZnPP和Hb不同程度地逆转了这一过程. 在4 h的处理过程中, SNP, 0.01%饱和度的CO水溶液以及Hematin明显地激发了NO的产生; 反之, 结合cPTIO或Tungstate处理后, NO的荧光信号几乎被完全抑制. 此外, 鸟苷酸环化酶(GC)的抑制剂ODQ阻断了CO诱导的气孔关闭, 而ODQ的作用又被cGMP的类似物8-Br-cGMP所逆转. 上述结果暗示, HO产生的CO可能参与了ABA诱导的蚕豆气孔关闭, NO和cGMP则是CO信号通路的下游分子. 相似文献
6.
钙调素在细胞外对花粉质膜异三聚体G蛋白的激活效应 总被引:1,自引:0,他引:1
钙调素(Calmodulin,CaM)传统上认为是一种胞内Ca~(2 )重要的多功能受体,是细胞内信号转导(Signal transduction)途径中的重要信号分子。近年来,人们发现它还存在于细胞外,并具有诸如促进细胞增殖、原生质体壁再生等生物学功能。在花粉实验体系中,我们证实,细胞外CaM对花粉萌发和花粉管伸长具有启动和促进作用,并初步提出G蛋白、钙信使系统以 相似文献
7.
蛋白磷酸化参与湖北海棠根系中水分胁迫诱导的ABA积累 总被引:17,自引:0,他引:17
水分胁迫诱导的ABA积累过程无论对水分胁迫下根-冠间的信息传递还是细胞逆境信息传递都是一个核心的问题。以湖北海棠(Malus hupenensis Rehd)实生苗根系为材料,对水分胁迫下ABA积累和蛋白磷酸化的关系进行了研究。结果表明,30%聚乙二醇(PEG6000)水分胁迫处理40min后可导致根系ABA含量急剧增加,处理100min时ABA含量可增加4倍左右。水分胁迫15min即可导致以HistoneⅢ为底物的总蛋白激酶活性升高。约30min左右达到高峰,随后逐步下降并最终恢复到原来水平;Ca^2 依赖的蛋白激酶活性变化和总蛋白激酶活性变化趋势相同,但其对水分胁迫的响应更为敏感。和蛋白激酶活性变化趋势相似,将^32P引入活体组织,水分胁迫可导致^32P标记的蛋白水平增加,但^32P标记的蛋白高峰出现在40min左右。蛋白激酶的两种抑制剂Quercetin和H7均可有效地抑制甚至完全阻断水分胁迫诱导的ABA积累。以上结果表明,水分胁迫诱导ABA积累的细胞信息传递过程中具有可逆蛋白磷酸化的参与。 相似文献
8.
与其他种类的植物细胞不同, 保卫细胞可以反复地进行扩张收缩运动, 进而达成气孔的开放和关闭. 在这个过程中, 调节保卫细胞细胞壁松弛的机理却不清楚. 从蚕豆表皮条中克隆了一个α类扩张蛋白, 并命名为VfEXPA1. VfEXPA1 的表达受暗处理和水淹处理的影响,但光照和ABA 的处理并不改变VfEXPA1 的表达. 进一步, 在烟草中过表达了VfEXPA1.VfEXPA1 过表达植株中蒸腾和光合速率显著增加, 且光诱导的气孔开放速度也大大高于野生型. 实验结果表明, 气孔保卫细胞特异表达的扩张蛋白VfEXPA1 调控了气孔开放过程. 相似文献
9.
一氧化氮参与水杨酸对蚕豆气孔运动的调控 总被引:7,自引:1,他引:7
研究了一氧化氮(NO)在水杨酸(SA)诱导蚕豆气孔运动中的作用. 结果表明, 在一定范围内, SA和NO都可诱导气孔关闭. 100 mmol/L SA能够提高保卫细胞胞质中NO的水平, NO清除剂和一氧化氮合酶(NOS)抑制剂都能够降低SA引起的胞质NO的增加. 同时, NO的清除剂PTIO和NOS的抑制剂L-NAME几乎能够完全抵消SA诱导气孔关闭的效应. 推测SA通过NOS途径诱导形成NO, 进而诱导气孔关闭. 鸟氨酸环化酶的抑制剂ODQ和 cADPR的拮抗剂烟碱能够减弱SA和NO诱导气孔关闭的作用. 表明在SA和NO诱导气孔关闭的过程中可能需要有cGMP和cADPR介导. 相似文献
10.
一氧化氮参与茉莉酸诱导蚕豆气孔关闭的信号转导 总被引:7,自引:2,他引:7
用一氧化氮(NO)特异性荧光探针DAF-2DA结合激光共聚焦显微技术证明蚕豆气孔保卫细胞中存在NO. 从以下几个方面证明NO可能参与JA调控气孔运动的信号转导过程: (ⅰ) 外源JA促进叶片气孔保卫细胞NO的合成; (ⅱ) JA和NO都能够诱导气孔关闭, 并具有浓度效应; (ⅲ) 低浓度的NO和JA之间在诱导气孔关闭上存在一定的加合效应; (ⅳ) NO的清除剂PTIO可大大减弱JA诱导蚕豆气孔关闭的作用, 一氧化氮合酶(NOS)抑制剂L-NAME能够抑制JA 诱导的蚕豆气孔关闭效应, 也可以抑制JA诱导保卫细胞中NO的产生. 推测JA处理诱导保卫细胞中NO的产生主要来源于NOS合成途径. 相似文献
11.
12.
13.
在有丝分裂及减数分裂时纺锤体包含两组微管,即染色体微管或称动点微管和极间微管(或称极至极微管)。在纺锤体发生的后阶段动点微管的装配是一个基本和重要的过程。在高等生物细胞内,已知纺锤丝附着点(简称着丝点)(SFAs)作为微管组织中心在此过程内起着主要的作用。在有丝及减数分裂时远在核膜破裂之前,SFAs就可以从形态上识别出来。然而虽在整个细胞周期中细胞内均含有大量的微管蛋白,但却从未在这些生物细胞核内发现过任 相似文献
14.
NCED3基因的持续诱导及ABA合成与代谢的协同调控在拟南芥ABA信号积累中的作用 总被引:3,自引:0,他引:3
ABA作为逆境信号在植物抗逆特别是抗旱中起着重要的作用. 由于ABA生物合成是ABA信号产生的根本基础, 因此ABA合成关键酶基因NCED3的启动一直被认为是操纵ABA信号产生的惟一机制. 本研究报道了ABA信号累积中ABA代谢和合成的协同操纵机制. 结果表明, 水分胁迫可导致拟南芥叶片中ABA水平急剧增加, 且在长期干旱胁迫情况下, ABA累积的最高水平始终处于一个相对稳定的状态. 无论是胁迫还是非胁迫状态下, ABA代谢都呈现指数递减规律, 且其代谢的半衰期没有太大的变化, 这意味着干旱条件下ABA的绝对代谢速率将随ABA水平上升而急剧加快, 由此可以推断ABA信号的产生是一个由多酶共同操纵的系统控制, 且NCED3的持续诱导是ABA信号稳定积累的前提. 进一步研究表明, 干旱可诱导一系列ABA合成酶的基因表达, 其中包括NCED3, AAO3和ABA3等. 伴随ABA的持续积累, NCED3, AAO3和ABA3的基因始终处于诱导表达状态. ABA代谢研究和基因表达分析结果相互印证, 共同揭示ABA信号的产生机制是一个由多酶共同参与, 且以ABA合成关键酶基因持续诱导为前提的操纵机制, 其中ABA代谢在ABA信号的操纵中起着重要的作用. 相似文献
15.
JWA蛋白在细胞内与α-微管蛋白的共定位 总被引:6,自引:0,他引:6
探讨了JWA在细胞内的分布特征, 特别是在有丝分裂过程中的动态变化及与α-微管蛋白的关系. 用免疫共沉淀方法研究JWA与α-微管蛋白的相关性; 用基因转染技术研究JWA蛋白高表达后JWA蛋白和α-微管蛋白的相互关系; 用荧光显微镜技术研究低温处理、药物阻滞细胞周期、JWA反义寡核苷酸处理的PC12细胞JWA蛋白和α-微管蛋白的相互作用; 分别用流式细胞仪分析和激光共聚焦技术检测PC12细胞的各细胞周期蛋白在细胞内的分布. JWA作为一种新的微管相关蛋白, 在微管动力学变化过程和细胞周期不同阶段与α-微管蛋白分布平行, 可能对微管具有稳定作用. 相似文献
16.
酪氨酸蛋白磷酸酶参与保卫细胞中ABA诱导产生H2O2的信号传递 总被引:1,自引:0,他引:1
酪氨酸蛋白磷酸酶(protein tyrosine phosphatases, PTPases)在动物细胞的信号转导中起着非常重要的作用, 但是人们对其在植物细胞中的功能却了解甚少. 在ABA调控气孔运动的信号转导中, H2O2和MAPK都是非常关键的下游信号组分, PTPases是MAPK的重要的调节因子, 而MAPK调节保卫细胞中ABA诱导H2O2的产生. 本研究结果表明, PTPases专一性抑制剂PAO不仅阻止ABA或H2O2诱导的蚕豆气孔关闭, 也可以使ABA或H2O2诱导关闭的气孔重新张开, 说明PTPases可能在H2O2的下游调节ABA诱导的蚕豆气孔关闭过程. PAO和H2O2都可以有效抑制蚕豆表皮细胞PTPases的活性, 加入还原剂DTT不能减弱PAO对PTPases的抑制作用, 但可以解除H2O2对PTPases的抑制作用, 即H2O2可使PTPases发生可逆失活. PAO也可抑制ABA诱导的蚕豆保卫细胞中H2O2的产生. 推测PTPases不仅可以通过调控MAPK来影响ABA诱导的蚕豆保卫细胞中H2O2的产生, 而且还可能作为H2O2信号分子的感受因子, 进一步放大和传递信息, 参与调节气孔的运动. 相似文献
17.
金属硫蛋白(metallothionein,MT)是一类低分子量(约6.5kD)富含半胱氨酸的金属结合蛋白。虽然现已发现MT广泛存在于哺乳动物多种组织中,但目前多采用组织匀浆提取MT后借助有关生化手段进行检测。潘爱华和陈吉龙对MT在大鼠几种组织细胞中的确切定位进行了研究。Onosaka等测定表明人脾脏中含有MT,对于MT在脾中的确切定位仍不清楚。此外,引人注目的是MT基因的诱导性,即在重金属或糖皮质激素等因素的诱导 相似文献
18.
19.
以拟南芥 (Arabidopsis thaliana) 野生型和突变体为材料, 利用激光共聚焦显微技术、实时定量PCR 和分光光度法, 结合药理学实验, 探讨两种气体信号分子硫化氢 (hydrogensulfide, H2S) 和一氧化氮 (nitric oxide, NO) 在乙烯 (ethylene, Eth) 调控气孔运动中的相互关系. 结果表明, H2S 合成抑制剂能明显抑制乙烯诱导的拟南芥气孔关闭; 乙烯能够显著增加拟南芥叶片的H2S 含量, 提高L-/D-半胱氨酸脱巯基酶 (磷酸吡哆盐依赖性酶) (L-/D-cysteinedesulfhydrase, L-/D-CDes) 活性及AtL-CDes 和AtD-CDes 的转录水平; 清除NO 可减弱乙烯的诱导效应; 乙烯亦可明显诱导Atnoa1 突变体叶片H2S 的积累, 但对Atnia1,nia2 突变体没有明显作用; H2S 合成抑制剂对乙烯诱导气孔保卫细胞和叶片的NO 水平升高以及硝酸还原酶(nitrate reductase, NR) 活性增强没有明显影响, 同样乙烯可以诱导Atl-cdes 和Atd-cdes 突变体保卫细胞NO 水平升高, 说明H2S 和NO 均参与乙烯诱导的拟南芥叶片气孔关闭, 且NO 可能位于H2S 上游参与调控这一信号通路. 相似文献
20.
酪氨酸蛋白磷酸酶可能影响ABA的积累和参与植物细胞水分胁迫信号传递 总被引:3,自引:1,他引:2
以水分亏缺诱发ABA积累的“刺激-反应”系统为模型对玉米胚芽鞘细胞的逆境信号传递进行了研究. 结果表明, 水分亏缺诱导的ABA积累可被质膜H+-ATPase及酪氨酸蛋白磷酸酶(protein tyrosine phosphatase, PTPase)专一抑制剂NaVO3阻断. 水分亏缺对质膜H+-ATPase活性没有影响, 质膜H+- ATPase激活剂也不能诱导ABA积累, 表明ABA积累和质膜H+-ATPase没有关系. 进一步研究表明, 水分亏缺诱导的ABA积累可被PTPase专一抑制剂PAO抑制, 并且水分亏缺可大大激活蛋白磷酸酶活性, 表明蛋白磷酸酶参与了细胞逆境信号传递. 脱水玉米胚芽鞘中至少含有4种以上的蛋白磷酸酶组分, 其中仅有1个组分是对NaVO3敏感的. 对NaVO3敏感的蛋白磷酸酶组分进一步纯化, 最终得到了在SDS-PAGE上惟一的分子量为66 kD的蛋白组分. 该蛋白磷酸酶对PTPase专一底物呈现很高的活性, 最适pH为6.0. 除可被PTPase特征抑制剂NaVO3抑制外, 还可被其他PTPase特征抑制剂如PAO, Zn2+, MO33+抑制, 但活性不受Ca2+和Mg2+的影响, 表明该纯化的蛋白磷酸酶可能为PTPase. 除对PTPase专一抑制剂敏感外, 该纯化的蛋白酶活性还对ABA积累的阻断剂DTT敏感, 这为PTPase参与ABA积累调控的细胞逆境信息传递提供了有力证据. 相似文献