首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了由双核铜配合物和表面活性剂组成的金属胶束催化PNPP水解的动力学和机理。提出了含两个水分子的双核铜配合物催化PNPP水解的动力学数学模型。结果表明:金属胶束催化PNPP水解是分子内反应;两个铜离子在催化PNPP水解过程中具有协同效应;由草酰胺桥联双核铜配合物与表面活性剂组成的金属胶束在催化PNPP水解中表现出高的活性。  相似文献   

2.
合成了[N-(2-脱氧-β-D-吡喃葡糖-2-水杨醛胺)]M(Ⅱ)单核金属配合物(M=Cu,Zn,Co,Ni),使用分光光度法研究了该单核的在CTAB胶束溶液中催化PNPP水解反应动力学,用单核配合物金属胶束的三元复合动力学模型对实验结果进行了讨论。实验结果表明:这类配合物在CTAB胶束溶液中形成金属胶束后,催化水解的能力明显增强,在中性或偏碱性环境中对PNPP的水解具有很好的催化活性,且金属配合物催化水解的速率常数其大小顺序为Zn(Ⅱ),Cu(Ⅱ),Co(Ⅱ),Ni(Ⅱ)。  相似文献   

3.
建立了金属胶束催化的三元复合物动力学模型,用此模型研究了吡啶类配体1a,1b,1c,1d与CTAB形成混合胶束,在Cu(Ⅱ)存在下,pH5.0 ̄7.0,30℃时对PNPP水解的影响。用最小二乘法线性拟合处理,分别得到了这4种配体的PKa及PNPP在金属胶束相中水解的一级速率常数(kN)和热力学常数(KM,KT),结果验证了三元复合物动力学模型的合理性,表明了此类配体对PNPP水解有很强的催化作用。  相似文献   

4.
运用金属胶束催化的三元复合物动力学模型,研究了吡啶类Zn(Ⅱ)和Ni(Ⅱ)配合物在CTAB存在下对PNPP水解的影响,得到了PNPP水解反应的动力学及热力学参数(k'N,kT,kM),定量地讨论了pH值对PNPP水解反应的影响,得到了金属胶束相中PNPP水解的动力学参数(kN)。结果表明吡啶类Zn(Ⅱ)和Ni(Ⅱ)配合物对PNPP水解的催化作用达60 ̄10^3倍,且Ni(Ⅱ)配合物的催化作用比Zn  相似文献   

5.
运用金属胶束催化的三元复合物动力学模型,研究了吡啶类Zn(Ⅱ)和Ni(Ⅱ)配合物在CTAB存在下对PNPP水解的影响,得到了PNPP水解反应的动力学及热力学参数(k′N,kT,kM),定量地讨论了pH值对PNPP水解反应的影响,得到了金属胶束相中PNPP水解的动力学参数(kN).结果表明吡啶类Zn(Ⅱ)和Ni(Ⅱ)配合物对PNPP水解的催化作用达60~103倍,且Ni(Ⅱ)配合物的催化作用比Zn(Ⅱ)配合物大.进一步验证了金属胶束催化的三元复合物动力学模型的合理性  相似文献   

6.
合成了一类新型吡啶衍生物配体,其组成和结构经MS,IR,1HMR及元素分析确证.研究了它们与金属离子(Cu2+,Ni2+,Zn2+)及CTAB形成金属胶束对PNPP水解的催化性能.结果表明,这些金属胶束对PNPP水解有显著的催化作用,金属离子在金属胶束中的活性大小依次为Cu2+,Ni2+和Zn2+.  相似文献   

7.
实验合成了单核配合物4-氯-2,6-二(N-羟已基氨基甲基)苯酚合铜,研究了不同pH条件下在不同的3种表面活性剂(CTAB,LSS,Brij35)所生成的胶束溶液中催化PNPP水解的动力学.结果表明,阳离子表面活性剂(CTAB)加快了PNPP的水解,两性离子表面活性剂(LSS)对反应先催化后抑制,而非离子表面活性剂(Brij35)则抑制了反应的进行.用三元复合物模型进行动力学处理,得到了相关的热力学和动力学参数.  相似文献   

8.
9.
用分光光度法研究了一种长链取代吡啶类配体(L)及其铜(Ⅱ)和锌(Ⅱ)的配合物在25℃及pH6.5-8.5的条件下,在CTAB胶束缓冲溶液中催化PNPP和PNPA水解的反应。结果表明,活化的配体羟基可以作为反应过程中有效的亲核物种,锌(Ⅱ)配合物比铜(Ⅱ)配合物能更有效地催化PNPP的水解,这种情况可以解释为锌(Ⅱ)配合物中活化的配体羟基具有更强的亲核进攻能力。作者推导了包括配体、金属离子和底物在内的金属配合物催化PNPP水解的三元复合物动力学模型,提出了金属配合物催化PNPA水解的双分子催化动力学模型,并得到了相应的热力学及动力学参数,实验结果也证明了这些模型的合理性。  相似文献   

10.
合成了3个配体:N,N,N’,N’,—四(2—羟乙基)—1,3—丙二胺(1),N,N,N’,N’,—四(2—羟乙基)—1,10—癸二胺(2),N,N,N’,N’,—四(2—羟乙基)—1,4—对甲苯二胺(3)及其与二价金属离子Zn(Ⅱ)和Co(Ⅱ)形成的金属配合物.在25℃,不同pH值下,研究了这些金属配合物在Brij35胶束溶液中催化PNPP水解的反应.其结果表明:在催化PNPP水解反应中,其活性物种为2:1(配体:金属离子)的单核金属配合物.不同金属配合物的催化活性与配合物的桥联配体及反应的微环境相关.  相似文献   

11.
建立了金属胶束催化的三元复合物动力学模型.用此模型研究了吡啶类配体1a,1b,1c,1d与CTAB形成混合胶束,在Cu(Ⅱ)存在下,pH5.0~7.0,30℃时对PNPP水解的影响.用最小二乘法线性拟合处理,分别得到了这4种配体的PKa及PNPP在金属胶束相中水解的一级速率常数(kN)和热力学常数(KM,KT),结果验证了三元复合物动力学模型的合理性,表明了此类配体对PNPP水解有很强的催化作用.  相似文献   

12.
合成了3个配体N,N,N′,N′,-四(2-羟乙基)-1,3-丙二胺(1),N,N,N′,N′,-四(2-羟乙基)-1,10-癸二胺(2),N,N,N′,N′,-四(2-羟乙基)-1,4-对甲苯二胺(3)及其与二价金属离子Zn (II)和Co(II)形成的金属配合物.在25℃,不同pH值下,研究了这些金属配合物在Brij35胶束溶液中催化PNPP水解的反应.其结果表明在催化PNPP水解反应中,其活性物种为2∶1(配体金属离子)的单核金属配合物.不同金属配合物的催化活性与配合物的桥联配体及反应的微环境相关.  相似文献   

13.
以3种含中心功能基(-OCH3)的二异羟肟酸开链冠醚过渡金属铜(Ⅱ)、锌(Ⅱ)和钴(Ⅱ)配合物作为水解酶模型,催化羧酸酯(PNPP)水解;研究了水解反应的动力学和机理,提出了水解反应的动力学模型。结果表明:在室温25℃条件下,这类配合物催化PNPP水解速率随着缓冲溶液pH值的增大而提高,表现出高的催化活性。  相似文献   

14.
将4种聚醚桥连二异羟肟酸过渡金属铜(Ⅱ)、锌(Ⅱ)、钴(Ⅱ)和锰(Ⅱ)配合物作为仿水解酶模型催化羧酸酯(PNPP)水解.探讨了聚醚桥连二异羟肟酸过渡金属配合物催化PNPP水解的动力学和机理;提出了配合物催化PNPP水解的动力学模型.结果表明,在25℃条件下随着缓冲溶液pH值的增大,配合物催化PNPP水解速率提高,并表现出好的催化活性。  相似文献   

15.
合成和表征了一种双核铜配合物Cu2(oxheel).该配合物和胶束形成的金属胶束被作为人工过氧化物酶用于催化过氧化氢氧化苯酚的反应.研究了双核铜配合物金属胶束催化苯酚氧化反应的机理,并建立了金属胶束催化苯酚氧化的动力学数学模型;讨论了过氧化氢/催化剂摩尔比、体系温度和体系酸度对催化反应速率的影响.  相似文献   

16.
合成和表征了一种双核铜配合物Cu2(oxheel).该配合物和胶束形成的金属胶束被作为人工过氧化物酶用于催化过氧化氢氧化苯酚的反应.研究了双核铜配合物金属胶束催化苯酚氧化反应的机理,并建立了金属胶束催化苯酚氧化的动力学数学模型;讨论了过氧化氢/催化剂摩尔比、体系温度和体系酸度对催化反应速率的影响.  相似文献   

17.
提出了金属配合物催化对苯二酚(HQ)氧化反应的动力学数学模型,按照文献方法合成了两种不同配体的金属铜配合物,研究了它们在水溶液中以及在阳离子表面活性剂CTAB胶束中催化过氧化氢氧化HQ的反应,研究结果表明,提出的动力学模型具有合理性,胶束微环境对金属铜配合物催化过氧化氢氧化HQ的反应有较大的影响。  相似文献   

18.
两种氮杂冠醚-水杨醛亚胺Schiff碱合钴(Ⅱ)被作为水解酶模型,催化羧酸酯(PNPP)水解,研究了该水解反应的动力学和机理,提出了水解反应的动力学模型,结果表明,在室温(25℃)条件下,这类钴(Ⅱ)配合物催化PNPP水解速率随着缓冲溶液pH值的增大而提高,表现出高的催化活性。  相似文献   

19.
合成了N-十二烷基二乙醇胺,在30℃、pH7.00的条件下,研究了该配体与Cu(Ⅱ)形成的金属配合物在Brij-35胶束溶液中对a-吡啶甲酸对硝基苯酚酯(PNPP)的催化水解作用,以及pH值对催化水解反应的影响,实验发现当配体与金属离子浓度在一定比例时,所形成的金属配合物对PNPP有显著的催化作用。  相似文献   

20.
文章合成和表征了两种大环Schiff碱过渡金属配合物NiL和CuL(L:高氯酸-5,7,7,12,14,14-六甲基-1,4,8,11-四氮杂环-4,11-二烯),并且将NiL或CuL与表面活性剂(LSS,CTAB)组成的金属胶束作为模拟水解金属酶用于催化羧酸酯(PNPP)水解。催化反应系统的特征光谱分析表明,在PNPP催化水解过程中形成了由Ni(II)或Cu(II)配合物与PNPP组成的中间物种,并由此提出PNPP催化水解的机理。依据本文提出的PNPP催化水解机理建立了用于计算动力学常数的动力学模型,并讨论了不同胶束和配合物结构对PNPP催化水解的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号