首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 267 毫秒
1.
Genome organization into linear chromosomes likely represents an important evolutionary innovation that has permitted the development of the sexual life cycle; this process has consequently advanced nuclear expansion and increased complexity of eukaryotic genomes. Chromosome linearity, however, poses a major challenge to the internal cellular machinery. The need to efficiently recognize and repair DNA double-strand breaks that occur as a consequence of DNA damage presents a constant threat to native chromosome ends known as telomeres. In this review, we present a comparative survey of various solutions to the end protection problem, maintaining an emphasis on DNA structure. This begins with telomeric structures derived from a subset of prokaryotes, mitochondria, and viruses, and will progress into the typical telomere structure exhibited by higher organisms containing TTAGG-like tandem sequences. We next examine non-canonical telomeres from Drosophila melanogaster, which comprise arrays of retrotransposons. Finally, we discuss telomeric structures in evolution and possible switches between canonical and non-canonical solutions to chromosome end protection.  相似文献   

2.
Composition and conservation of the telomeric complex   总被引:6,自引:0,他引:6  
The telomere is composed of telomeric DNA and telomere-associated proteins. Recently, many telomere-associated proteins have been identified, and various telomere functions have been uncovered. In budding yeast, scRap1 binds directly to telomeric DNA, and other telomere regulators (Sir proteins and Rif proteins) are recruited to the telomeres by interacting with scRap1. Cdc13 binds to the most distal end of the chromosome and recruits telomerase to the telomeres. In fission yeast and humans, TTAGGG repeat binding factor (TRF) family proteins bind directly to telomeric DNA, and Rap1 proteins and other telomere regulators are recruited to the telomeres by interacting with the TRF family proteins. Both organisms have Pot1 proteins at the most distal end of the telomere instead of a budding-yeast Cdc13-like protein. Therefore, fission yeast and humans have in part common telomeric compositions that differ from that of budding yeast, a result that suggests budding yeast has lost some telomere components during the course of evolution.  相似文献   

3.
Telomeres are important segments of chromosomes that protect chromosome ends from nucleolytic degradation and fusion. At meiosis telomeres display an unprecedented behavior which involves their attachment and motility along the nuclear envelope. The movements become restricted to a limited nuclear sector during the so-called bouquet stage, which is widely conserved among species. Recent observations suggest that telomere clustering involves actin and/or microtubules, and is altered in the presence of impaired recombinogenic and chromosome related functions. This review aims to provide an overview of what is currently known about meiotic telomere attachment, dynamics and regulation in synaptic meiosis.  相似文献   

4.
5.
Telomeres are important segments of chromosomes that protect chromosome ends from nucleolytic degradation and fusion. At meiosis telomeres display an unprecedented behavior which involves their attachment and motility along the nuclear envelope. The movements become restricted to a limited nuclear sector during the so-called bouquet stage, which is widely conserved among species. Recent observations suggest that telomere clustering involves actin and/or microtubules, and is altered in the presence of impaired recombinogenic and chromosome related functions. This review aims to provide an overview of what is currently known about meiotic telomere attachment, dynamics and regulation in synaptic meiosis.  相似文献   

6.
7.
Protecting the terminus: t-loops and telomere end-binding proteins   总被引:11,自引:0,他引:11  
Telomeric DNA is composed of a region of duplex telomeric tract followed by a single-strand overhang on the 3 G-rich strand. The DNA is packaged by proteins that associate directly with the single- and double-strand regions of the telomeric tract and by their associated proteins. This review discusses the evidence that G-strand overhangs are present on both ends of eukaryotic chromosomes and the steps needed to generate these overhangs. The overhangs are protected by specialized G-overhang-binding protein and/or invasion by the overhang of the duplex region of the telomeric tract to form a structure called a t-loop. The G-overhang-binding proteins identified from different species are described, and their properties compared. The data supporting the existence of t-loops at native telomeres is discussed, and the conditions required to promote their in vitro formation are presented.  相似文献   

8.
Telomeres were first recognized as a bona fide constituent of the chromosome based on their inability to rejoin with broken chromosome ends produced by radiation. Today, we recognize two essential and interrelated properties of telomeres. They circumvent the so-called end-replication problem faced by genomes composed of linear chromosomes, which erode from their termini with each successive cell division. Equally vital is the end-capping function that telomeres provide, which is necessary to deter chromosome ends from illicit recombination. This latter property is critical in facilitating the distinction between the naturally occurring DNA double-strand breaks (DSBs) found at chromosome ends (i.e., telomeres) and DSBs produced by exogenous agents. Here we discuss, in a brief historical narrative, key discoveries that led investigators to appreciate the unique properties of telomeres in protecting chromosome ends, and the consequences of telomere dysfunction, particularly as related to recombination involving radiation-induced DSBs. Dedication. In appreciation of his heart-felt commitment to research and education, and the life-long influence he has had on the lives of students and colleagues, the authors wish to dedicate this paper to Professor Joel S. Bedford. Received 21 May 2007; received after revision 28 June 2007; accepted 6 August 2007  相似文献   

9.
Telomeres and chromosomal instability   总被引:2,自引:0,他引:2  
Telomeres are distinctive structures, composed of a repetitive DNA sequence and associated proteins, which enable cells to distinguish chromosome ends from DNA double-strand breaks. Telomere alterations, caused by replication-mediated shortening, direct damage or defective telomere-associated proteins, usually generate chromosomal instability, which is observed in senescence and during the immortalization process. In cancer cells, this chromosome instability could be extended by their ability to repair chromosomes and terminate in break-fusion-bridge cycles. Dysfunctional telomeres can be healed by activation of telomerase or by the alternative mechanism of telomere lengthening. Activation of such telomere maintenance mechanisms may help to preserve the integrity of chromosomes even if they play a role in chromosomal instability. This review focuses on molecular processes involved in telomere maintenance and chromosomal instability associated with dysfunctional telomeres in mammalian cells.Received 24 July 2003; received after revision 5 September 2003; accepted 11 September 2003  相似文献   

10.
Beyond their role in replication and chromosome end capping, telomeres are also thought to function in meiotic chromosome pairing, meiotic and mitotic chromosome segregation as well as in nuclear organization. Observations in both somatic and meiotic cells suggest that the positioning of telomeres within the nucleus is highly specific and believed to be dependent mainly on telomere interactions with the nuclear envelope either directly or through chromatin interacting proteins. Although little is known about the mechanism of telomere clustering, some studies show that it is an active process. Recent data have suggested a regulatory role for telomere chromatin structure in telomere movement. This review will summarize recent studies on telomere interactions with the nuclear matrix, telomere chromatin structure and factors that modify telomere chromatin structure as related to regulation of telomere movement.  相似文献   

11.
The structure and function of tRNA genes of higher eukaryotes   总被引:1,自引:0,他引:1  
E Kubli 《Experientia》1981,37(1):1-9
  相似文献   

12.
13.
14.
During meiosis, telomeres cluster and promote homologous chromosome pairing. Telomere clustering depends on conserved SUN and KASH domain nuclear membrane proteins, which form a complex called the linker of nucleoskeleton and cytoskeleton (LINC) and connect telomeres with the cytoskeleton. It has been thought that LINC-mediated cytoskeletal forces induce telomere clustering. However, how cytoskeletal forces induce telomere clustering is not fully understood. Recent study of fission yeast has shown that the LINC complex forms the microtubule-organizing center (MTOC) at the telomere, which has been designated as the “telocentrosome”, and that microtubule motors gather telomeres via telocentrosome-nucleated microtubules. This MTOC-dependent telomere clustering might be conserved in other eukaryotes. Furthermore, the MTOC-dependent clustering mechanism appears to function in various other biological events. This review presents an overview of the current understanding of the mechanism of meiotic telomere clustering and discusses the universality of the MTOC-dependent clustering mechanism.  相似文献   

15.
The FANCJ family of DNA helicases is emerging as an important group of proteins for the prevention of human disease, cancer, and chromosomal instability. FANCJ was identified by its association with breast cancer, and is implicated in Fanconi Anemia. Proteins with sequence similarity to FANCJ are important for maintenance of genomic stability. Mutations in genes encoding proteins related to FANCJ, designated ChlR1 in human and Chl1p in yeast, result in sister chromatid cohesion defects. Nematodes mutated in dog-1 show germline as well as somatic deletions in genes containing guanine-rich DNA. Rtel knockout mice are embryonic lethal, and embryonic stem cells show telomere loss and chromosomal instability. FANCJ also shares sequence similarity with human XPD and yeast RAD3 helicases required for nucleotide excision repair. The recently solved structure of XPD has provided new insight to the helicase core and accessory domains of sequence related Superfamily 2 helicases. The functions and roles of members of the FANCJ-like helicase family will be discussed. Received 17 September 2008; received after revision 24 October 2008; accepted 28 October 2008  相似文献   

16.
17.
Therian mammals (marsupials and placentals) have an XX female: XY male sex chromosome system, which is homologous to autosomes in other vertebrates. The testis-determining gene, SRY, is conserved on the Y throughout therians, but is absent in other vertebrates, suggesting that the mammal system evolved about 310 million years ago (MYA). However, recent work on the basal monotreme mammals has completely changed our conception of how and when this change occurred. Platypus and echidna lack SRY, and the therian X and Y are represented by autosomes, implying that SRY evolved in therians after their divergence from monotremes only 166 MYA. Clues to the ancestral mechanism usurped by SRY in therians are provided by the monotremes, whose sex chromosomes are homologous to the ZW of birds. This suggests that the therian X and Y, and the SRY gene, evolved from an ancient bird-like sex chromosome system which predates the divergence of mammals and reptiles 310 MYA. Received 4 March 2008; received after revision 22 April 2008; accepted 3 June 2008  相似文献   

18.
Cry proteins, produced by Bacillus thuringiensis (Bt), are widely used for the control of insect pests in agriculture as spray products or expressed in transgenic crops, such as maize and cotton. Little was known regarding the mechanism of action of these toxins when the first commercial Bt product was introduced fifty years ago. However, research on the mechanism of action over the last two decades has enhanced our knowledge of toxin interaction with membrane receptors and their effects in insect midgut cells. All this information allowed for the rational design of improved toxins with higher toxicity or toxins that overcome insect resistance, which could compromise Bt use and effectiveness in the field. In this review we discuss and evaluate the different models of the mode of action of Cry toxins, including a discussion about the role of various receptors in toxin action. Received 13 June 2008; received after revision 05 November 2008; accepted 11 November 2008  相似文献   

19.
The study of homologous recombination in the fission yeastSchizosaccharomyces pombe has recently been extended to the cytological analysis of meiotic prophase. Unlike in most eukaryotes no tripartite SC structure is detectable, but linear elements resembling axial cores of other eukaryotes are retained. They may be indispensable for meiotic recombination and proper chromosome segregation in meiosis I. In addition fission yeast shows interesting features of chromosome organization in vegetative and meiotic cells: Centromeres and telomeres cluster and associate with the spindle pole body. The special properties of fission yeast meiosis correlate with the absence of crossover interference in meiotic recombination. These findings are discussed. In addition homologous recombination in fission yeast is reviewed briefly.This article is dedicated to Urs Leupold, the founder of fission yeast genetics.  相似文献   

20.
DNA ligase I (LigI) plays a central role in the joining of strand interruptions during replication and repair. In our current study, we provide evidence that DNA ligase III (LigIII) and XRCC1, which form a complex that functions in single-strand break repair, are required for the proliferation of mammalian LigI-depleted cells. We show from our data that in cells with either dysfunctional LigI activity or depleted of this enzyme, both LigIII and XRCC1 are retained on the chromatin and accumulate at replication foci. We also demonstrate that the LigI and LigIII proteins cooperate to inhibit sister chromatid exchanges but that only LigI prevents telomere sister fusions. Taken together, these results suggest that in cells with dysfunctional LigI, LigIII contributes to the ligation of replication intermediates but not to the prevention of telomeric instability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号