共查询到20条相似文献,搜索用时 15 毫秒
1.
傅湧 《江西师范大学学报(自然科学版)》2009,33(1)
在锥序Banach空间中利用集值映射的上图导数引进了强有效意义下的广义梯度,在下C-半连续条件下,利用凸集分离定理证明了该广义梯度的存在性,由此建立了集值向量优化问题强有效解在广义梯度下的最优性条件. 相似文献
2.
集值映射的广义梯度与超有效解 总被引:8,自引:0,他引:8
在锥序Banach空间中引入了一类集值映射的广义梯度,在一定条件下通过凸集分离定理证明了此广义梯度的存在性; 并给出集值优化问题的超有效解在广义梯度下的最优条件. 相似文献
3.
在锥序Banach空间中,对于集值优化问题(SOP),利用contingent上图切导数,引进了集值映射弱有效意义下的广义梯度;在集值映射具有连通性条件下,利用凸集分离定理证明了集值映射弱有效广义梯度的存在性,由此建立了集值映射优化问题弱有效解在广义梯度下的最优性条件. 相似文献
4.
余丽 《福州大学学报(自然科学版)》2015,43(1):11-15
引入集值映射ε-强有效次梯度和ε-强有效次微分的概念.在一定条件下得到该次微分的存在性定理,讨论该次微分的一些性质.作为应用,对于一类特殊的参数扰动优化问题,研究其在ε-强有效意义下的稳定性. 相似文献
5.
集值优化问题的ε-严有效解的最优性条件 总被引:3,自引:0,他引:3
在局部凸拓扑向量空间中引入了ε严有效点、ε严有效解的概念.在近似锥次类凸集值映射下,利用拓扑向量空间中的凸集分离定理,获得了带广义不等式约束的集值优化问题的ε严有效解的必要条件.同时,利用锥基的一个性质,获得了这类集值优化问题的ε严有效解的充分条件. 相似文献
6.
余丽 《东北师大学报(自然科学版)》2014,(2)
在实赋范线性空间中讨论了集值优化问题ε-严有效解的广义高阶导数型最优性条件.利用广义高阶切集,在没有任何凸性假设下,借助基泛函及ε-严有效解的性质,得到了集值优化问题ε-严有效解的广义高阶导数型的必要和充分条件. 相似文献
7.
在赋范空间中引入了集值映射的广义m-阶相依(邻接)导数.在没有任何凸性假设下,利用非线性标量化泛函和广义m-阶相依(邻接)导数,获得了无约束集值优化问题弱有效解的最优性必要和充分性条件,所获得的结果推广了文献中的几个结果. 相似文献
8.
余丽 《福州大学学报(自然科学版)》2019,47(1):7-11
在实赋范线性空间中,借助新的二阶切上图导数的概念,利用凸集分离定理,建立了集值优化问题强有效元的二阶Fritz John和Kuhn-Tucker必要最优性条件. 在下半连续的假设下,建立了集值优化问题强有效元的二阶 Kuhn-Tucker充分最优性条件. 相似文献
9.
本文主要讨论约束集值优化问题Benson真有效解的高阶最优性条件。在广义凸性条件下,获得集值映射广义高阶上图导数的重要性质和约束集值优化问题的高阶最优性充分与必要条件,所获得的结果推广了文献中的相应结果。 相似文献
10.
引进了集值优化问题的一种广义近似解,统一了其他集值优化问题的近似解,研究了广义近似解的性质,获得了广义近似弱有效解的最优性条件. 相似文献
11.
利用分离理并借助集值映射的Y-上图导数和Clarke正切上图导数给出向量集值优化问题取得Henig有效解的两个最优性必要条件。 相似文献
12.
王其林 《四川师范大学学报(自然科学版)》2007,30(5):556-559
在拓扑向量空间中定义了(u,0V)-广义次似凸集值映射.在相对内部的条件下,利用凸集分离定理,建立了此映射的择一定理.利用此择一定理,获得了带广义等式和不等式约束的优化问题的弱有效解的最优性条件. 相似文献
13.
14.
用广义相依上导数,描述了含不等式约束的集值向量极小化问题的最优性充分条件与Fritz-John型最优性必要条件。最后还用相依上导数描述了该集值极小化问题的Kuhn-Tucker型最优性必要条件。 相似文献
15.
16.
本文提出了集值映射的一种二阶导数,并讨论了其相关性质.运用此二阶导数以及二阶相依导数,作者建立了实赋范空间中集值优化问题的二阶必要最优性条件;同时,在有限维赋范空间中,建立了集值优化问题的二阶充分最优性条件. 相似文献
17.
本文讨论相依上图导数形式下广义弧连通锥-凸集值优化近似解的最优性条件问题.首先,本文引入次弧连通锥-凸集值映射的概念,并举例说明次弧连通锥-凸性是弧连通锥-凸性的推广;其次,得到了次弧连通锥-凸集值映射的两个有用性质;最后,在次弧连通锥-凸性条件下,分别建立了集值优化问题强近似极小元和弱近似有效元的充分最优性条件. 相似文献
18.
余丽 《山东大学学报(理学版)》2013,48(3)
在Hausdorff局部凸拓扑向量空间中引进了集值映射ε-强有效次微分的概念.在一定条件下,通过凸集分离定理证明了该次微分的存在性定理.作为应用,得到了约束集值优化问题ε-强有效解在Lagrange乘子形式下的最优性必要条件. 相似文献
19.
利用近似锥-次类凸集值映射的性质证明了当序偶集值映射是近似锥-次类凸时,对应的Lagrange函数也是近似锥-次类凸的.利用此结果得到集值优化问题取得ε-强有效元的Lagrange型必要条件,利用ε-强有效元的性质得到Lagrange型充分条件. 相似文献
20.
引进集值映射的Henig有效次微分的概念,并用它得到了集值向量优化问题局部Henig有效解在支撑函数和Lagrange乘子形式下的最优性必要条件. 相似文献