首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Na channels in skeletal muscle concentrated near the neuromuscular junction   总被引:2,自引:0,他引:2  
K G Beam  J H Caldwell  D T Campbell 《Nature》1985,313(6003):588-590
Neuronal function depends crucially on the spatial segregation of specific membrane proteins, particularly the segregation associated with sites of synaptic contact. Understanding the factors governing this localization of proteins is a major goal of cellular neurobiology. A conspicuous example of synaptic specialization is the almost exclusive localization of vertebrate skeletal muscle acetylcholine (ACh) receptors to the subsynaptic membrane of the neuromuscular junction (for example, refs 1,2). The localization of other membrane proteins in skeletal muscle has been much less studied, but a knowledge of their distribution is crucial for understanding the factors governing regional specialization. We have explored the distribution in muscle of the voltage-gated Na channel responsible for the action potential using the loose patch-clamp technique, and have measured Na currents in 5-10 micron-diameter membrane patches as a function of distance from the end plate region of snake and rat muscle fibres. Here we report that the Na current density immediately adjacent to the endplate is 5-10-fold higher than at regions away from the endplate. The increased Na current density falls off rapidly with distance, reaching the background level 100-200 micron from the endplate. Although one might expect ACh receptors to be concentrated near the region of ACh release, such a concentration for Na channels, which propagate the impulse throughout the length of the cell, is surprising and suggests that factors similar to those responsible for concentrating ACh receptors at the endplate also operate to concentrate Na channels.  相似文献   

2.
S Rotzler  H Schramek  H R Brenner 《Nature》1991,349(6307):337-339
During formation of the neuromuscular junction, acetylcholine receptors in the endplate membrane become metabolically stabilized under neural control, their half-life increasing from about 1 day to about 10 days. The metabolic stability of the receptors is regulated by the electrical activity induced in the muscle by innervation. We report here that metabolic stabilization of endplate receptors but not of extrajunctional receptors can be induced in the absence of muscle activity if muscles are treated with the calcium ionophore A23187. Acetylcholine receptor stabilization was also induced by culturing non-stimulated muscle in elevated K+ with the Ca2+ channel activator (+)-SDZ202-791. Conversely, activity-dependent receptor stabilization is prevented in muscle stimulated in the presence of the Ca2+ channel blockers (+)-PN200-110 or D-600. Treatment of muscles with ryanodine, which induces Ca2+ release from the sarcoplasmic reticulum in the absence of activity, does not cause stabilization of junctional receptors. Evidently, muscle activity induces metabolic acetylcholine receptor stabilization by way of an influx of Ca2+ ions through dihydropyridine-sensitive Ca2+ channels in the endplate membrane, whereas Ca2+ released from the sarcoplasmic reticulum is ineffective in this developmental process.  相似文献   

3.
4.
J F Fiekers  I G Marshall  R L Parsons 《Nature》1979,281(5733):680-682
Antibiotic-induced muscle paralysis has frequently been found in both experimental animals and man with three distinct classes of antibiotic: (1) streptomycin and related aminoglycoside compounds, (2) polymyxins and (3) tetracyclines. Recently lincomycin and its chemical congener, clindamycin, have been reported to produce muscle paralysis which has different characteristics from those seen with other classes of antibiotic. Although closely related in chemical structure, lincomycin and clindamycin also seem to produce muscle paralysis by different mechanisms. Clindamycin is considered to exert a direct depressant action on muscle contractility whereas the action of lincomycin is considered to be primarily a depression of neuromuscular transmission. We report here that each of these antibiotics had a significant but different influence on endplate channel behaviour. Clindamycin increased the rate of miniature endplate current (m.e.p.c.) decay and reduced its voltage sensitivity without altering its exponential nature. Lincomycin split m.e.p.c. decay into an initial rapid phase followed by a prolonged phase.  相似文献   

5.
J Lai  J Jedrzejczyk  J A Pizzey  D Green  E A Barnard 《Nature》1986,321(6065):72-74
The 'heavy', collagen-tailed form of acetylcholinesterase (AChE), having a s(0)20,w of 16S in mammals, occurs at vertebrate muscle endplates and has been widely regarded as a marker of neuronal influence on muscle in vivo. However, an interesting exception has been described by Bacou et al., in a previous report in Nature. They found, in a slow-twitch muscle of the rabbit, that after denervation the 16S form of AChE increases markedly, rather than disappearing. Such a phenomenon would modify current concepts of neuromuscular regulation. We report here, however, that this exception is apparent rather than real in terms of endplate AChE regulation.  相似文献   

6.
A J Harborne  M E Smith 《Nature》1979,282(5734):85-87
The entire surface membrane of denervated skeletal muscle is sensitive to the neuromuscular transmitter, acetylcholine (ACh), whereas in innervated muscle only the junctional area is sensitive. It has been proposed that this difference is due to a 'trophic' effect exerted by ACh in innervated muscle to keep the extrajunctional regions of the surface membrane insensitive to its depolarising action. Several studies have demonstrated an agonist-induced potentiation of ACh sensitivity, followed by desensitisation, at the endplate region of normal muscles. The potentiation has been attributed to a cooperative action of ACh on the receptors. Desensitisation of the extrajunctional regions of denervated muscles by ACh has also been described. We now provide evidence that the transmitter itself potentiates the ACh contracture and depolarisation responses of the denervated muscles of the rat in vitro and that it produces this effect by increasing the number of available ACh receptors on the surface membrane.  相似文献   

7.
E M Callaway  J M Soha  D C Van Essen 《Nature》1987,328(6129):422-426
During normal postnatal maturation, mammalian muscles undergo an orderly process of synapse elimination, whereby each muscle fibre loses all but one of the multiple inputs with which it is endowed at birth. Experimental perturbations that increase or decrease the overall activity of nerve and/or muscle cause a corresponding increase or decrease in the overall rate of neuromuscular synapse elimination. On other grounds it has been suggested that competition among motor neurons is important in determining which synapses survive and which are eliminated. Would a difference in activity among the terminals at the same endplate affect the outcome of the competition and not just its rate? We investigated this issue by blocking activity for four days in a small fraction of the motor neurons innervating the neonatal rabbit soleus muscle. Twitch tensions of motor units were subsequently measured for both the active and inactive populations of neurons to assess whether the inactive neurons had lost fewer or more synapses than is normal. We found that inactive motor neurons have a significant advantage compared to active counterparts in control experiments, a finding opposite to that expected if the neuromuscular junction operated by classical 'Hebbian' rules of competition.  相似文献   

8.
D C Ogden  S A Siegelbaum  D Colquhoun 《Nature》1981,289(5798):596-598
It is now thought that amine local anaesthetic compounds (procaine, lignocaine and related molecules) depress electrical activity in nerve and muscle cells by binding to sites within ion channels and blocking current flow. Such mechanisms have been proposed to account for the effects of these local anaesthetics on both the voltage-dependent sodium current and the postsynaptic actylcholine (ACh)-activated ionic current. Recently, strong evidence for block of ion channels by cationic drug molecules has been obtained by recording current from single ACh-activated channels in the presence of permanently charged quaternary derivatives of lignocaine. Most amine local anaesthetic compounds are, however, weak bases, present in both charged and uncharged forms at physiological pH, and some question remains as to whether a charged group is essential for blockade of ion channels. To resolve this question, we studied the action of the uncharged local anaesthetic benzocaine (ethyl-4-aminobenzoate) on postsynaptic ACh-activated endplate current and extrajunctional single channel current of frog muscle. We report here evidence that strongly suggests that benzocaine blocks ACh-activated ion channels.  相似文献   

9.
N Stockbridge  W N Ross 《Nature》1984,309(5965):266-268
Calcium channels are found in the presynaptic terminals of neurones, where they have a key role in synaptic transmission. They are also found in the somata of many cells, in dendrites and along a few axons. In no cell is the actual distribution of these channels known in detail, because there are no known toxins or other agents suitable for labelling calcium channels, and the current through these channels is usually too small to be quantified with extracellular electrodes. However, several experiments have suggested that the density of the channels is less in the axon than in the cell body or terminal region. Here we have used the indicator dye Arsenazo III in conjunction with an array of photodetectors to examine the spatial influx of calcium in the presynaptic terminal region of the giant barnacle, Balanus nubilus. In these cells, calcium entry occurs in a restricted region less than 50 micron in length, which corresponds closely to the region of synaptic contact with second-order cells. Outside this area the magnitude of calcium entry is reduced at least 50-fold. With reasonable assumptions it follows that the calcium channel density is equally localized. In addition, we demonstrate that these cells have a calcium-activated potassium conductance. Since calcium entry is restricted to the synaptic zone, this conductance must be effective only in this region.  相似文献   

10.
W D Snider  G L Harris 《Nature》1979,281(5726):69-71
Recent investigations have established that many of the normal properties of muscle fibres are maintained, at least in part, by muscle activity. Thus, a fall in resting membrane potential, an increase in input resistance, and spread of acetylcholine receptors to extrajunctional sites can all be induced by abolishing muscle activity and prevented by direct stimulation of denervated muscle fibres. Muscle activity also exerts a trophic influence on the innervating motoneurones; furthermore it may be a factor in the regulation of sprouting. Brown and Ironton found fine, "ultra-terminal sprouts" emanating from the endplates of muscles rendered inactive by chronic conduction block of the muscle nerve. Pestronk and Drachman saw increased branching of the motor nerve terminal and a consequent increase in endplate size in similar conditions. If these sprouts at the endplates of inactive muscles were functional, one might expect more transmitter to be released in response to nerve stimulation. We report here that both quantum content and spontaneous miniature endplate potential (m.e.p.p) frequency are increased at the terminals of inactive (disused) muscles.  相似文献   

11.
Three distinct classes of protein kinases have been shown to regulate Ca2+ current in excitable tissues. Cyclic AMP-dependent protein kinase mediates the action of noradrenaline on the Ca2+ current of cardiac muscle cells. Cyclic GMP-dependent protein kinase mediates the serotonin-induced modulation of the Ca2+ current in identified snail neurons. The Ca2+/diacylglycerol-dependent protein kinase (protein kinase C) has also been found to regulate Ca2+ currents of neurons. However, no neurotransmitter has yet been shown to regulate Ca2+ current through the activation of protein kinase C. We now report that cholecystokinin, a widely occurring neuropeptide which is present in molluscan neuron, modulates the Ca2+ current in identified neurons of the snail Helix aspersa, and that this effect appears to be mediated by protein kinase C. Specifically, sulphated cholecystokinin octapeptide 26-33 (CCK8), activators of protein kinase C, and intracellular injection of protein kinase C, all shorten the Ca2+-dependent action potential and decrease the amplitude of the Ca2+ current in these cells. All these effects are not reversible within the duration of the experiments. Moreover, intracellular injections of low concentrations of protein kinase C, which are ineffective by themselves, enhance the effectiveness of low concentrations of CCK8 on the Ca2+ current.  相似文献   

12.
P R Stanfield  F M Ashcroft  T D Plant 《Nature》1981,289(5797):509-511
In excitable cells, ions permeate the cell membrane through ionic channels, some of which open and close in response to changes in the potential difference across the membrane. It has been supposed that this opening and closing (or gating) process is largely independent of the permeating ion. However, we show here that the gating of the resting potassium permeability of frog skeletal muscle depends on the species of ion which carries current across the membrane. The potassium permeability investigated allows K+ to move in across the membrane more easily than out. This property is known as inward or anomalous rectification and is shared by cell membranes of skeletal muscle, egg and certain other cells. In both egg cells and skeletal muscle fibres, the group IIIB metal ion Tl+, which can replace K+ in several other systems in experimental conditions, also permeates the inward rectifier. Indeed, Tl+ is more permeant than K+ (refs 8, 9). However, when Tl+ carries current inwards across the membrane, the inward rectifier inactivates over a brief period when the membrane is hyperpolarized, whereas when K+ carries current, the permeability increases with time under hyperpolarization.  相似文献   

13.
N W Davies 《Nature》1990,343(6256):375-377
Since their discovery in cardiac muscle, ATP-sensitive K+(KATP) channels have been identified in pancreatic beta-cells, skeletal muscle, smooth muscle and central neurons. The activity of KATP channels is inhibited by the presence of cytosolic ATP. Their wide distribution indicates that they could have important physiological roles that may vary between tissues. In muscle cells the role of K+ channels is to control membrane excitability and the duration of the action potential. In anoxic cardiac ventricular muscle KATP channels are believed to be responsible for shortening the action potential, and it has been proposed that a fall in ATP concentration during metabolic exhaustion increases the activity of KATP channels in skeletal muscle, which may reduce excitability. But the intracellular concentration of ATP in muscle is buffered by creatine phosphate to 5-10 mM, and changes little, even during sustained activity. This concentration is much higher than the intracellular ATP concentration required to half block the KATP-channel current in either cardiac muscle (0.1 mM) or skeletal muscle (0.14 mM), indicating that the open-state probability of KATP channels is normally very low in intact muscle. So it is likely that some additional means of regulating the activity of KATP channels exists, such as the binding of nucleotides other than ATP. Here I present evidence that a decrease in intracellular pH (pHi) markedly reduces the inhibitory effect of ATP on these channels in excised patches from frog skeletal muscle. Because sustained muscular activity can decrease pHi by almost 1 unit in the range at which KATP channels are most sensitive to pHi, it is likely that the activity of these channels in skeletal muscle is regulated by intracellular protons under physiological conditions.  相似文献   

14.
为提高门式刚架端板连接点的可靠性,基于有限元法,建立了螺栓预拉力的三维有限元模型,分析门式刚架端板连接Γ形梁柱节点的力学性能,得到不同端板厚度和节点构造形式。结果表明:端板竖放比端板横放节点有更高的承载能力和刚度,但端板竖放时对螺栓的受力及强度要求较高,对连接处的整体强度不利,易造成螺栓强度不足,故建议采用端板横放节点构造形式。该研究为门式钢架端板的工程应用提供了参考。  相似文献   

15.
Inositol 1,4,5-trisphosphate (Ins P3) is a second messenger releasing intracellular Ca2+ into the cytosol. It has recently been proposed that inositol 1,3,4,5-tetrakisphosphate (Ins P4), which is formed from Ins P3 by Ins P3-3-kinase, acts with Ins P3 as a second messenger by promoting extracellular Ca2+ entry. It has been suggested that Ins P3 itself can act to stimulate Ca2+ uptake from the extracellular fluid, although a physiological function for Ins P4 was not excluded. Transmembrane currents can now be measured in single cells by voltage clamping under conditions where the intracellular perfusion fluid can be changed several times during individual experiments. We have used this method to test the effects of Ins P3 and Ins P4 on the Ca2+-activated K+ current, and now show that neither Ins P3 alone nor Ins P4 alone can activate a sustained current, whereas Ins P3 and Ins P4 in combination evoke a sustained increase in Ca2+-activated K+ current which is dependent on external Ca2+.  相似文献   

16.
M Morad  Y E Goldman  D R Trentham 《Nature》1983,304(5927):635-638
'Calcium-antagonists' are a group of pharmacological agents which are potent vasodilators and are clinically used for the treatment of angina. They are thought to block Ca2+ channels in vascular smooth muscle and myocardium but other sites of action have been proposed. These agents bind tightly to heart muscle and suppress action potential and contraction. Nifedipine and nisoldipine (BAY K 5552) are Ca2+ antagonists which have o-nitrobenzyl groups and are photolabile. We have found that short pulses of UV light rapidly inactivate these drugs in ventricular muscle. This observation allowed us to study the effect of Ca2+ antagonists on action potential, Ca2+ current and tension in conditions in which diffusion of those drugs from their site of action was not rate limiting. Our studies, described here, suggest that the primary mechanism of action of Ca2+ antagonists is the blockade of the Ca2+ channel and support the idea that extracellular space is the immediate source of contractile Ca2+ in the frog heart.  相似文献   

17.
G Salviati  E Biasia  M Aloisi 《Nature》1986,322(6080):637-639
Skeletal muscle fibres, long multinucleated cells, arise by fusion of mononucleated myoblasts to form a myotube that matures into the adult fibre. The two major types of mature fibre, fast and slow fibres, differ physiologically in their rate of isotonic shortening. At the molecular level these type-specific physiological properties are ascribed to different isoforms of myosin, a major protein involved in shortening. Differentiation of fast and slow fibres seems to be under the control of motoneurones, and mature fibres are innervated by only one motoneurone. When rat soleus muscle (SOL, a slow muscle) is dually innervated with a fast nerve, it acquires some properties of a fast muscle, that is, low sensitivity to caffeine and high glycogen content. We report here that in dually innervated soleus muscle the foreign fast nerve induces synthesis of fast isoforms of myosin, but only in the segment of the muscle fibre that is close to the foreign endplate. The localized influence of the nerve endplates suggest that factors controlling the phenotypic expression of the muscle fibre have a short range of activity.  相似文献   

18.
T Tanabe  K G Beam  B A Adams  T Niidome  S Numa 《Nature》1990,346(6284):567-569
It is thought that in skeletal muscle excitation-contraction (EC) coupling, the release of Ca2+ from the sarcoplasmic reticulum is controlled by the dihydropyridine (DHP) receptor in the transverse tubular membrane, where it serves as the voltage sensor. We have shown previously that injection of an expression plasmid carrying the skeletal muscle DHP receptor complementary DNA restores EC coupling and L-type calcium current that are missing in skeletal muscle myotubes from mutant mice with muscular dysgenesis. This restored coupling resembles normal skeletal muscle EC coupling, which does not require entry of extracellular Ca2+. By contrast, injection into dysgenic myotubes of an expression plasmid carrying the cardiac DHP receptor cDNA produces L-type calcium current and cardiac-type EC coupling, which does require entry of extracellular Ca2+. To identify the regions responsible for this important functional difference between the two structurally similar DHP receptors, we have expressed various chimaeric DHP receptor cDNAs in dysgenic myotubes. The results obtained indicate that the putative cytoplasmic region between repeats II and III of the skeletal muscle DHP receptor is an important determinant of skeletal-type EC coupling.  相似文献   

19.
沼生花褶伞粗毒的毒性实验研究   总被引:2,自引:0,他引:2  
用花褶伞粗毒液对美洲蜚蠊进行腹腔注射、小鼠脑室注射、蟾蜍坐骨神经腓肠肌、蛙心灌流实验,检测了该粗毒液的毒性.结果表明,花褶伞粗毒对昆虫毒性不明显,对哺乳动物有一定毒性,可能含有神经致幻毒素裸盖菇素和一些拟胆碱成分.  相似文献   

20.
为了解端板厚度、螺栓直径、螺栓预紧力、柱翼缘厚度、端板钢材强度及过火温度等因素对高强钢端板连接节点力学性能的影响,对薄高强钢端板替代厚普通钢端板这一设计理念进行深入探讨,采用ABAQUS对高强钢端板连接节点进行有限元分析.有限元分析结果表明:端板厚度增加,节点的初始转动刚度和极限承载力提高,转动能力下降;螺栓直径增加,节点的初始转动刚度、极限承载力及转动能力均提高;螺栓预紧力增加,节点的初始转动刚度提高,极限承载力和转动能力基本不变;柱翼缘厚度增加,节点的初始转动刚度提高,极限承载力基本不变,转动能力略有减小;端板钢材强度增加,节点的初始刚度基本不变,极限承载力提高,转动能力在端板钢材强度不超过Q460时基本不变,高于Q460后显著减小;与采用较厚普通钢端板的节点相比,采用薄高强钢端板的节点常温下和火灾后均可达到相似的承载力、相近甚至更高的转动能力;端板连接节点火灾后可能发生失效模式转变,甚至由延性转变为脆性的失效模式.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号