首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MicroRNAs (miRNAs) are short ~21-nt non-coding RNA molecules that have been shown to regulate a number of biological processes. Previous reports have shown that overexpression of miR-128 in glioma cells inhibited cell proliferation. Literature also suggests that miR-128 negatively regulates prostate cancer cell invasion. Here, we show that overexpression of hsa-miR-128, a brain-enriched microRNA, induces apoptosis in HEK293T cells as elucidated by apoptosis assay, cell cycle changes, loss of mitochondrial membrane potential and multicaspase assay. By in silico analysis, we identified a putative target site within the 3′ untranslated region (UTR) of Bax, a proapoptotic member of the apoptosis pathway. We found that ectopic expression of hsa-miR-128 suppressed a luciferase reporter containing the Bax-3′ UTR and reduced the levels of Bax in HEK293T cells. Taken together, our study demonstrates that overexpression of hsa-miR-128 not only induces apoptosis in HEK293T cells but also is an endogenous regulator of Bax protein.  相似文献   

2.
Angiogenesis and signal transduction in endothelial cells   总被引:11,自引:0,他引:11  
Endothelial cells receive multiple information from their environment that eventually leads them to progress along all the stages of the process of formation of new vessels. Angiogenic signals promote endothelial cell proliferation, increased resistance to apoptosis, changes in proteolytic balance, cytoskeletal reorganization, migration and, finally, differentiation and formation of a new vascular lumen. We aim to review herein the main signaling cascades that become activated in angiogenic endothelial cells as well as the opportunities of modulating angiogenesis through pharmacological interference with these signaling mechanisms. We will deal mainly with the mitogen-activated protein kinases pathway, which is very important in the transduction of proliferation signals; the phosphatidylinositol-3-kinase/protein kinase B signaling system, particularly essential for the survival of the angiogenic endothelium; the small GTPases involved in cytoskeletal reorganization and migration; and the kinases associated to focal adhesions which contribute to integrate the pathways from the two main sources of angiogenic signals, i.e. growth factors and the extracellular matrix.Received 13 February 2004; received after revision 25 March 2004; accepted 19 April 2004  相似文献   

3.
4.
5.
目的探讨枸杞多糖(LBP)对体外培养的人肺腺癌细胞 A549的增殖抑制作用及其可能的作用机制.方法用不同浓度的LBP处理 A549细胞,MTT法检测24、48、72h时间点 LBP对 A549细胞的生长抑制率,实验设为对照组和实验组(1/2IC50作用48小时),MTT法绘制生长曲线、细胞计数计算倍增时间、流式细胞仪检测凋亡率及其细胞周期、RT PCR检测 SurvivinmRNA的变化、Westernblot检测 CyclinB1蛋白的变化,transwell体外侵袭实验观察药物对细胞体外侵袭的影响.结果 MTT显示不同浓度的LBP均能明显抑制 A549细胞的增殖且成剂量 效应关系,实验组细胞的倍增时间、凋亡率与对照组相比,均有统计学意义(P<0.05);LBP使细胞阻滞在 G2期,SurvivinmRNA表达和 CyclinB1蛋白的表达均降低,与对照组相比差异有显著性(P<0.05).结论 LBP可抑制 A549细胞的增殖,其机理可能与 LBP使 SurvivinmRNA表达下降引起细胞凋亡及 CyclinB1蛋白的表达降低造成细胞周期阻滞及抑制细胞的侵袭能力有关  相似文献   

6.
7.
TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis in TRAIL-sensitive human malignant glioma cells. We show for the first time that TRAIL stimulates cell growth in TRAIL-resistant glioma cells. TRAIL-induced cell growth in resistant cells occurred through increased cell cycle progression as determined by flow cytometry and Western blot analysis of retinoblastoma protein phosphorylation. Western blot analysis of TRAIL-treated resistant cells revealed phosphorylation of ERK1/2 proteins and in vitro kinase analysis confirmed the activation of the ERK1/2 kinases. Inhibition of MEK1 eliminated both TRAIL-induced ERK1/2 activation and cell proliferation. In addition, siRNA inhibition of c-FLIP expression eliminates TRAIL-induced ERK1/2 activation and proliferation. Furthermore, overexpression of c-FLIPL potentiates TRAIL-induced ERK1/2 activation and proliferation of resistant glioma cells. Our results have shown for the first time that TRAIL-induced ERK1/2 activation and proliferation of TRAIL-resistant human glioma cells is dependent upon the expression of the long form of the caspase-8 inhibitor c-FLIPL. Received 2 November 2007; received after revision 14 December 2007; accepted 21 December 2007  相似文献   

8.
9.
Phosphatidylinositol 3-kinase (PI3-kinase) activity has been implicated in regulating cell cycle progression at distinct points in the cell cycle by preventing cell cycle arrest or apoptosis. In this study, the role of PI3-kinase activity during the entire G1 phase of the ongoing cell cycle was studied in Chinese hamster ovary (CHO) cells synchronized by mitotic shake-off. We show that inhibition of PI3-kinase activity during and 2 h after mitosis inhibited cell cycle progression into S phase. In the presence of the PI3-kinase inhibitor wortmannin or LY294002, cells were arrested during early G1 phase, leading to the expression of the cleaved caspase-3, a central mediator of apoptosis. These results demonstrate that PI3-kinase activity is required for progression through the M/G1 phase. In the absence of PI3-kinase activity, cells are induced for apoptosis in this particular phase of the cell cycle. Received 7 September 2005; received after revision 26 October 2005; accepted 11 November 2005  相似文献   

10.
11.
Oxidative DNA damage to cells activates poly(ADP-ribose)polymerase-1 (PARP-1) and the poly(ADP-ribose) formed is rapidly degraded to ADP-ribose by poly(ADP-ribose)glycohydrolase (PARG). Here we show that PARP-1 and PARG control extracellular Ca2+ fluxes through melastatin-like transient receptor potential 2 channels (TRPM2) in a cell death signaling pathway. TRPM2 activation accounts for essentially the entire Ca2+ influx into the cytosol, activating caspases and causing the translocation of apoptosis inducing factor (AIF) from the inner mitochondrial membrane to the nucleus followed by cell death. Abrogation of PARP-1 or PARG function disrupts these signals and reduces cell death. ADP-ribose-loading of cells induces Ca2+ fluxes in the absence of oxidative damage, suggesting that ADP-ribose is the key metabolite of the PARP-1/PARG system regulating TRPM2. We conclude that PARP-1/PARG control a cell death signal pathway that operates between five different cell compartments and communicates via three types of chemical messengers: a nucleotide, a cation, and proteins.  相似文献   

12.
Human ASIP (hASIP) is expressed as numerous alternative splicing isoforms and there is an atypical protein kinease C (aPKC) phosphorylation site in exon 17b of the encoded sequence. We have identified an important role for exon 17b in cancer cells. Our results showed that hASIP-sa and sb had different effects on cell growth and Fas/FasL-mediated apoptosis in BEL-7404 human hepatoma cells. Human ASIP-sa modified the S phase of the cell cycle and might stimulate cell proliferation. Growth inhibition by hASIP-a antisense oligonucleotide-confirmed the positive action of hASIP-sa. Compared with hASIP-sa, hASIP-sb accelerated Fas/FasL-induced apoptosis, examined by sub-G1 accumulation, chromatin condensation, nuclear fragmentation, PARP cleavage, caspase-8 degradation and mitochondria- regulated cell death. Treatment with aPKC inhibitor could enhance Fas/FasL-mediated apoptosis in hASIP-sa-overexpressing cells, suggesting that hASIP-sa and its interaction with aPKC might contribute to the malignant growth and the blocking of Fas/FasL-mediated apoptosis, while hASIP-sb might function as an antagonist of hASIP-sa.Received 24 March 2005; received after revision 31 May 2005; accepted 21 June 2005  相似文献   

13.
G1 phase cell cycle proteins, such as cyclin-dependent kinase 6 (Cdk6) and its activating partners, the D-type cyclins, are important regulators of T-cell development and function. An F-box protein, called F-box only protein 7 (Fbxo7), acts as a cell cycle regulator by enhancing cyclin D-Cdk6 complex formation and stabilising levels of p27, a cyclin-dependent kinase inhibitor. We generated a murine model of reduced Fbxo7 expression to test its physiological role in multiple tissues and found that these mice displayed a pronounced thymic hypoplasia. Further analysis revealed that Fbxo7 differentially affected proliferation and apoptosis of thymocytes at various stages of differentiation in the thymus and also mature T-cell function and proliferation in the periphery. Paradoxically, Fbxo7-deficient immature thymocytes failed to undergo expansion in the thymus due to a lack of Cdk6 activity, while mature T cells showed enhanced proliferative capacity upon T-cell receptor engagement due to reduced p27 levels. Our studies reveal differential cell cycle regulation by Fbxo7 at different stages in T-cell development.  相似文献   

14.
Cellular responses to mild heat stress   总被引:12,自引:0,他引:12  
Since its discovery in 1962 by Ritossa, the heat shock response has been extensively studied by a number of investigators to understand the molecular mechanism underlying the cellular response to heat stress. The most well characterized heat shock response is induction of the heat shock proteins that function as molecular chaperones and exert cell cycle regulatory and anti-apoptotic activities. While most investigators have focused their studies on the toxic effects of heat stress in organisms such as severe heat stress-induced cell cycle arrest and apoptosis, the cellular response to fever-ranged mild heat stress has been rather underestimated. However, the cellular response to mild heat stress is likely to be more important in a physiological sense than that to severe heat stress because the body temperature of homeothermic animals increases by only 1–2°C during febrile diseases. Here we provide information that mild heat stress does have some beneficial role in organisms via positively regulating cell proliferation and differentiation, and immune response in mammalian cells.Received 14 May 2004; received after revision 2 August 2004; accepted 16 August 2004  相似文献   

15.
Most tumor cells exhibit a glycolytic phenotype. Thus, inhibition of glycolysis might be of therapeutic value in antitumor treatment. Among the agents that can suppress glycolysis is citrate, a member of the Krebs cycle and an inhibitor of phosphofructokinase. Here, we show that citrate can trigger cell death in multiple cancer cell lines. The lethal effect of citrate was found to be related to the activation of apical caspases-8 and -2, rather than to the inhibition of cellular energy metabolism. Hence, increasing concentrations of citrate induced characteristic manifestations of apoptosis, such as caspase-3 activation, and poly-ADP-ribose polymerase cleavage, as well as the release of cytochrome c. Apoptosis induction did not involve the receptor-mediated pathway, since the processing of caspase-8 was not attenuated in cells deficient in Fas-associated protein with Death Domain. We propose that the activation of apical caspases by citrate could be explained by its kosmotropic properties. Caspase-8 is activated by proximity-induced dimerization, which might be facilitated by citrate through the stabilization of intermolecular interactions between the proteins.  相似文献   

16.
目的 观察中药复方解聚复肾宁(JJFSN)对高耱环境下大鼠肾小球系膜细胞(mesangial cell,MC)增殖和细胞周期的影响.方法 以高糖诱导MC增殖,采用血清药理学方法制备不同浓度JJFSN舍药血清,加入培养液中,用MTT法检测细胞增殖,流式细胞技术检测细胞周期.结果 MTT显示:JJFSN含药血清可抑制高糖诱导的MC过度增殖(P<0.05),并且这种作用具有药物剂量和时间依赖关系.流式细胞技术分析表明:JJFSN可逆转高糖对细胞周期的影响,使G0/G1期细胞比例增加,S期细胞比例下降(P<0.05) 在高浓度时还能促进MC细胞凋亡.结论 JJFSN可以通过调节细胞周期,促进细胞凋亡,从而抑制高糖诱导的MC过度增殖,这可能是JJFSN防治DN早期的作用杌理.  相似文献   

17.
目的 观察表没食子儿茶素-3-没食子酸酯(EGCG)对人横纹肌肉瘤细胞株PLA-802的抑制作用,以及对细胞内TGF-β1/Smad4的表达的影响,探索EGCG抑制横纹肌肉瘤细胞生长的机制.方法 体外培养人横纹肌肉瘤细胞株PLA-802,并用不同浓度的EGCG作用不同的时间.用MTT检测EGCG对PLA-802细胞生长情况的影响,用流式细胞术检测细胞周期的变化情况,RT-PCR和Westernblot分别检测细胞内TGF-β1和Smad4的mRNA和蛋白水平的表达.结果 MTT结果显示EGCG显著降低了PLA-802细胞的存活率((P<0.05).流式细胞结果表明EGCG明显降低了S期而增加了G1期(P<0.05).而TGF-β1和其下游因子Smad4的mRNA和蛋白水平的表达也明显受到EGCG的抑制,且这种抑制作用呈浓度-时间依赖性(P<0.05).结论 EGCG发挥其抑制PLA-802细胞的作用可通过抑制TGF-β1信号通路,这或许将为临床治疗横纹肌肉瘤提供新的思路.  相似文献   

18.
The kinesin-related protein HsEg5 plays essential roles in mitotic spindle dynamics. Although inhibition of HsEg5 has been suggested as an aid in cancer treatment, the effects of such inhibition on human cells have not been characterized. Here we studied the effects of monastrol, an allosteric HsEg5 inhibitor, on AGS and HT29 cell lines and compared them to those of taxol. While both cell lines were similarly sensitive to taxol, AGS cells were more sensitive to monastrol. The differences in sensitivity were determined by the degree of inhibitory effect on cell proliferation, reversibility of monastrol-induced G2/M arrest, intracellular phenotypes and induction of apoptosis. In both cell lines, monastrol-induced apoptosis was accompanied by mitochondrial membrane depolarization and poly-ADP-ribose polymerase 1 cleavage. In AGS, but not HT29 cells, monastrol-induced apoptosis involved a prominent cleavage of procaspases 8 and 3. While in AGS cells, monastrol induced the formation of symmetric microtubule asters only, in HT29 cells, asymmetric asters were also formed, which may be related to specific HsEg5 functions in HT29 cells.Received 18 February 2004; received after revision 30 May 2004; accepted 16 June 2004  相似文献   

19.
20.
Lethal toxin (LT) is a major virulence factor secreted by anthrax bacteria. It is composed of two proteins, PA (protective antigen) and LF (lethal factor). PA transports the LF inside the cell, where LF, a zinc-dependent metalloprotease cleaves the mitogen activated protein kinase kinase (MAPKK) enzymes of the mitogen activated protein kinase (MAPK) signaling pathway, thereby impairing their function. This disruption of the MAPK pathway, which serves essential functions such as proliferation, survival and inflammation in all cell types, results in multisystem dysfunction in the host. The inactivation of the MAPK pathway in both macrophages and dendritic cells leads to inhibition of proinflammatory cytokine secretion, downregulation of costimulatory molecules such as CD80 and CD86, and ineffective T cell priming. The net result is an impaired innate and adaptive immune response. Endothelial cells of the vascular system undergo apoptosis upon LT exposure, also likely due to inactivation of the MAPK pathway. The activity of various hormone receptors such as glucocorticoids, progesterone and estrogen is also blocked, due to inhibition of p38 MAPK phosphorylation, thus affecting the bodys response to stress. The present review summarizes the various disarming effects of Bacillus anthracis through the use of a single weapon, the lethal toxin.Received 12 June 2004; received after revision 13 July 2004; accepted 28 July 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号