首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 271 毫秒
1.
通过非线性有限元软件ABAQUS中的Cohesive黏结单元模拟锚杆杆体-灌浆体界面、灌浆体-周围岩体界面之间的接触,建立玻璃纤维增强聚合物(GFRP)抗浮锚杆杆体-基岩的轴对称数值计算模型,探究全长黏结GFRP抗浮锚杆的拉拔特征和变形规律。研究结果表明:本文建立的有限元模型能够较好地反映GFRP抗浮锚杆的荷载-位移关系、轴应力及剪应力沿锚固深度的分布规律。随着拉拔荷载的增加,灌浆体的应力逐渐增大并沿锚固深度向下传递,灌浆体应力的影响范围也逐渐扩大;周围岩体的应力持续增大,GFRP抗浮锚杆对周围岩体的横向作用范围也相应增大。锚筋弹性模量越小,轴应力与剪应力传递深度越浅;GFRP锚杆轴应力的衰减速率比钢筋抗浮锚杆的衰减速率快。随着GFRP抗浮锚杆的锚固长度的增加,轴应力衰减速率加快,轴应力传递深度减小,剪应力峰值点与地表的距离增大,剪应力峰值和传递深度变小。  相似文献   

2.
为了研究全长黏结式锚杆拉拔工况下的应力变形特征,利用FLAC3D建立数值模型,分析锚杆受力特征、土体响应,以及拉拔性能的影响因素。结果表明,(1)锚杆轴力分布沿杆体逐渐减小;(2)随着加载的进行,破坏沿锚杆体迅速传递,最终导致锚杆整体破坏;(3)土体受到锚杆摩阻力的影响,存在被锚杆拉出的趋势;(4)随着围压的增大,荷载-位移曲线在破坏前的线性特征更加显著,锚杆的破坏荷载也逐渐增大,采用指数方程对其关系进行拟合能得到较高的精度;(5)围压的增加能够增大锚杆与周围土体之间的黏结力,但是存在一极限值,当围压增加到一定程度后,并不能提高锚杆的锚固力。  相似文献   

3.
目的提出一种运用通丝螺纹杆连接的地下新管幕结构,通过试验验证新管幕结构横向锚固构件的锚固性能.方法采用与实际工程相同的锚固试件进行拉拔试验,进而得出不同锚固构件的荷载-位移关系曲线、拔承载力及破坏形态.结果新管幕横向锚杆试验主要产生锚杆拉断与锚杆粘结破坏两种破坏形式.锚杆设置螺母及钢板等措施可以提高抗拉拔力,当锚固长度不小于200 mm时,抗拔力主要取决于锚杆强度.改变拉拔顺序对试件的拉拔力有影响,建议锚杆间距至少要大于300 mm,否则需要考虑"群锚效应"影响.结论通丝螺纹锚杆设置螺母及钢板等措施对增强锚固性能有很大的帮助,且锚杆间距较小时存在群锚效应,这种锚固方法能够满足工程的需求.  相似文献   

4.
为深入研究玻璃纤维锚杆(GFRP锚杆)代替传统钢筋锚杆作为支护结构应用于基坑工程的可行性,本文通过现场拉拔试验探究了GFRP锚杆应力沿杆体的分布规律,通过有限元分析研究了不同参数的影响规律,并为提高GFRP锚杆在基坑工程应用的可行性,进一步探讨了常见锚具失效的机理,开发设计了新型锚杆锚具。结果表明:GFRP锚杆在拉拔过程中,轴力沿锚杆杆体呈指数型衰减,最后趋近于零,存在一个临界锚固深度,大部分轴力作用范围为0~4m左右;剪应力分布具有峰值点,大致位于离端口0.5m处,最大剪应力峰值为2.27MPa,剪应力发挥的主要区间在0.5m~3.5m范围内;轴力分布范围扩大的速率远小于拉拔荷载增加的速率,当荷载增加到极限荷载的50%时,应力分布范围趋近于最大传递距离;上覆压力变化对锚杆轴力传递范围没有明显影响;当粘聚力和内摩擦角增加到一定值时,对锚杆轴力影响开始下降;新型GFRP锚具能有助于GFRP锚杆发挥出其强抗拉特性,具有良好的工程应用价值。  相似文献   

5.
GFRP(玻璃纤维增强聚合物)抗浮锚杆因其布置灵活、分散应力、耐腐蚀性强、绿色环保等优点,成为钢筋抗浮锚杆的良好替代品。为进一步研究GFRP抗浮锚杆的承载性能,本文基于青岛某基坑抗浮工程中的6根GFRP筋和钢筋锚杆开展现场拉拔破坏性试验。试验结果表明:钢筋锚杆与GFRP锚杆平均破坏荷载分别为324 kN、394 kN,锚固强度利用率均达到92%。在相同直径、相同锚固长度条件下,GFRP锚杆能够承受更大的拉拔力,且发挥了更大的黏结强度。在荷载-相对滑移曲线分析中,GFRP抗浮锚杆整体呈缓“S”型,钢筋锚杆整体呈“L”型,表明GFRP锚杆抗浮性能优于钢筋锚杆。根据二次多项式回归分析,当锚杆杆体位移量小于20 mm时,预测精度较高,最高可达96.15%。研究结果对实际抗浮工程应用具有一定的借鉴和参考价值。  相似文献   

6.
树脂锚杆锚固段剪应力分布及其损伤模式分析   总被引:1,自引:0,他引:1       下载免费PDF全文
为了分析树脂锚杆锚固段剪应力分布及其承载、损伤机理,提高树脂锚杆支护在煤矿现场应用的有效性,首先根据煤矿树脂锚杆的围岩环境和受力特点,基于集中载荷作用于半无限体表面和无限体内部的弹性力学解得到了树脂锚杆在非锚固段围岩破碎和完整时的锚固段锚固界面剪应力计算式,分析了锚杆杆体拉力在锚固段锚固界面的剪应力形成机理;然后采用FLAC数值模拟软件模拟了树脂锚杆锚固段的承载及变形,得到了树脂锚杆在一定载荷和围压作用下锚固界面塑性发展趋势;最后以混凝土试块模拟围岩,并在混凝土试块预留孔中锚固了树脂锚杆进行实验室拉拔试验,得到了树脂锚杆锚固段剪应力分布及其增加趋势.结果表明,树脂锚杆剪应力开始时呈负指数形态分布,随着锚杆拉应力的增大,锚固起始端剪切破坏剪应力降低,无围压时峰值剪应力迅速向较深部锚固界面移动并锚固失效,有围压时锚固界面在锚固起始端剪切破坏后仍有较大的锚杆拉应力发展范围.  相似文献   

7.
为研究冲击荷载作用下层状充填体的动力学特性,本文采用分离式霍普金森压杆(SHPB)系统及LSDYNA模拟软件,研究灰砂比、冲击速率和分层数对充填体动态弹性模量、静/动态峰值应力、动态强度增长因子及破坏模式的影响规律。研究结果表明:随分层数增加,充填体的动态弹性模量、静/动态峰值应力逐渐减小;随灰砂比增加,充填体的静/动态峰值应力逐渐增大;随冲击速率增大,充填体的动态弹性模量、动态峰值应力及动态强度增长因子逐渐增大;在冲击破碎过程中,完整充填体的破坏模式主要表现为剪切破坏,而层状充填体则于分层面处发生劈裂破坏;当冲击速率小于4 m/s时,未分层充填体沿试件表面发生轻微破碎,层状充填体则沿试件分层面处发生断裂;充填体内分层面的存在可降低充填体动态峰值应力。  相似文献   

8.
基于统计损伤理论的锚杆受力全历程分析   总被引:1,自引:1,他引:0  
基于统计损伤理论,假设锚杆剪切滑移界面各微元的剪切强度服从Weibull概率分布,建立了考虑残余强度的锚杆界面统计损伤本构模型,并选取微元建立锚杆锚固端的受力平衡,确立了锚杆各锚固深度下剪切滑移、轴力、侧阻力以及损伤的数值解法。基于室内拉拔试验确定本构方程,以工程实例进行了验证。同时对锚杆拉拔荷载传递的全历程进行探讨。结果表明:随着拉拔荷载的增加,锚杆顶部的侧阻力增长至峰值点后衰减,最终稳定至残余强度,剪应力分布单峰曲线进一步向锚固深度内传递,锚杆界面应力软化的本质是损伤积累并传递的过程。参数m能够反映剪切滑移曲线的峰后软化速率,减小m可以降低接触面软化和损伤积累传递的速率,从而降低锚杆整体刚度的退化速度,在一定荷载范围内减少锚杆滑移。  相似文献   

9.
GFRP锚杆锚固特性研究   总被引:2,自引:0,他引:2  
通过玻璃纤维增强塑料(GFRP)锚杆与水泥砂浆之间的粘结强度试验,研究了GFRP锚杆的锚固特性.包括不同强度等级砂浆对粘结强度的影响和GFRP锚杆直径对锚杆拉拔性能的影响.采用理论分析方法,研究了GFRP锚杆表面沿锚固长度方向的应力分布,获得了锚杆轴力和粘结应力沿杆长的分布规律.并采用数值模拟方法对结果进行了验证.  相似文献   

10.
为研究端锚锚杆在冲击载荷作用下的动力响应,采用ABAQUS/Explicit软件对锚杆开展动态冲击数值模拟试验,分析不同冲击能量条件下端锚锚杆的抗冲击力学性能。研究结果表明:随着冲击能量的增大,锚杆最大冲击力和伸长率逐渐提高,锚杆全过程动力响应时间也相应增加;在冲击载荷作用下,锚杆自由端受力存在一个传递过程,即冲击瞬间靠近冲击位置的自由端杆体先受力,然后逐渐向靠近锚固端一侧传递,之后锚杆受力逐渐调整,最终趋于稳定;锚杆锚固端轴应力和剪应力分布可划分为冲击初期、中期、末期三个阶段,当冲击能量增大时,锚固端轴应力和峰值剪应力逐渐增大,锚杆更容易进入塑性屈服状态,杆体与锚固剂界面破坏也越严重。  相似文献   

11.
为了探究锚杆不同锚固参数对顺层岩质边坡稳定性的影响,基于综合考虑锚杆轴向作用力和横向作用力的锚杆数值模型,嵌入离散元软件UDEC(universal distinct element code)中的局部加固单元LOCAL REINFORCE单元,针对某顺层岩质边坡,分析了锚杆长度、锚固角、锚杆间距和布设方式对边坡稳定性的影响,并基于正交试验提出了锚固优化方案.结果 表明:锚杆存在有效长度,在有效长度内,锚杆长度和边坡安全系数存在线性关系;锚杆存在最优锚固角,且锚杆长度越大,最优锚固角越小;锚杆间距越大,边坡安全系数越小,且安全系数下降速率随间距的增大逐步减小;以边坡安全系数和锚杆用量为评价指标,通过正交试验对等长支护锚固参数进行了优化设计,得出了较佳的两个锚固试验方案;各锚固参数对边坡稳定性影响由大到小分别为:锚杆间距、锚杆长度、锚固角;锚杆布设方式对边坡稳定性的提升由大到小分别为:由长到短型、等长布置型、由短到长型.在考虑锚杆布设方式时,应使锚杆穿越的岩层与边坡位移情况相匹配.  相似文献   

12.
借助连杆裂解实验获得断裂接合面,利用逆向工程重构断裂面,建立带缺损的连杆模型,实现连杆断裂面缺损定量描述.探究不同尺寸、不同位置的缺损对连杆强度的影响,以此为依据制定加工中相关技术标准.通过模拟得出:随缺损尺寸增加,连杆承受的应力逐渐增加,连杆强度降低.缺损面积越大,其对连杆应力的影响越显著.同尺寸缺损当其位于接合面内部时,连杆的等效应力大于其位于接合面边缘,即内部缺损带来的危害高于边缘缺损.为保证连杆强度,缺损尺寸应满足:边缘缺损,当1.5mm<b<2.5mm时,a≤-1.125b+5.0875;面内缺损,当1.4mm<b<2.1mm时,a≤-1.143b+4.8.  相似文献   

13.
锚杆作为岩土工程的主要支护材料,广泛应用于边坡、基坑、隧道等工程中。目前在工程中最为常见的锚固技术,是有变形钢筋与水泥砂浆经钻孔注浆而形成。在实际应用中,因钢筋易腐蚀,耐久性差的特点,成为锚固工程中的一大隐患。GFRP锚杆强度高、质量轻、耐腐蚀性强、低松弛等优点,可以替代钢筋作为锚杆应用于锚固工程中。但GFRP筋作为脆性材料,其与水泥砂浆之间的握裹力能否满足要求,将会直接影响到锚固效果。通过对不同锚固深度的GFRP锚杆与水泥砂浆室内拉拔试验,发现握裹力随锚固深度增加而增大,握裹强度随着锚固深度的增加呈现减小的趋势,同时水泥砂浆凝固时间对握裹强度有较大影响,7天初凝时握裹强度仅有28天终凝时的60%左右。通过与同等直径钢筋锚杆与水泥砂浆握裹力对比发现,GFRP锚杆与水泥砂浆握裹力能够达到钢筋锚杆的要求。  相似文献   

14.
组合桥面板U肋螺栓接头疲劳受力性能   总被引:2,自引:1,他引:1  
针对组合桥面板受力特点,采用一种宽口U肋,设计制作了1个足尺试件,通过疲劳加载试验检验U肋螺栓接头的受力性能,并通过有限元模型对接头受力进行了分析。试验结果显示,开裂源于母板栓孔边缘并最终裂透至手孔。有限元分析表明,母板的头排栓孔附近,距孔边缘约1/3孔径处应力集中明显,集中系数约为2.5;手孔形状、拼接板厚度及栓孔大小对母板栓孔应力集中影响很小;相较8 mm厚U肋的组合板或常规钢桥面板,该组合板的接头母板栓孔受力要大许多,但其疲劳强度也满足规范要求。  相似文献   

15.
锚固是边坡支护中的一种重要方法,目前的理论模型大都不考虑地震过程中边坡的响应状态,在边坡锚杆的锚固抗震机理方面存在一定欠缺。本文基于边坡及锚杆在地震作用下力的传递过程分析,提出了一种边坡锚杆动力简化分析模型;利用锚杆荷载分布解析解,分析了不同响应地震动、围岩属性等参数对锚杆受力的影响,从理论上进一步阐述了锚杆的抗震锚固机理。得到了如下结论:岩体的弹性模量和泊松比不是锚杆锚固能力的关键性因素,软岩对硬岩同样可以起到锚固支护的效果;锚杆能够提高岩体的整体性和自稳能力,对多结构面控制岩石边坡,应混合使用贯穿长锚杆和单结构面锚杆的优化锚固方式。  相似文献   

16.
基于弹性理论的拉力型锚杆锚固段应力分布规律研究   总被引:1,自引:0,他引:1  
视锚杆和周围介质为弹性材料,在弹性半空间里,利用Mindlin位移解,根据拉力型锚杆实际工作状态,推导出拉力型锚杆锚固段轴向应力和弹性粘结应力分布的方程.并分析相关岩土参数对锚固段轴向应力和剪应力的分布的影响,得出影响较大的几个因素,为拉力杆的力学分析和工程设计提供理论依据.  相似文献   

17.
借助美国MTS810电液伺服材料试验机和高温炉,对常温和600℃两种温度状态下石灰岩试件进行不同加载速率下的单轴压缩试验,得到石灰岩力学性能随加载速率的变化规律。结果表明:常温时,石灰岩岩样在3×10-4~3×10-3 mm/s的低应变率范围内,加载速率对峰值应力和弹性模量影响不大,在加载速率为3×10-3~3×10-1 mm/s的区段内,峰值应力和弹性模量均呈明显上升趋势;600℃时,峰值应力和弹性模量随加载速率增加变化不大。常温时,不同加载速率下石灰岩岩样均为竖向劈裂破坏,且在3×10-3~3×10-1 mm/s的加载速率区段中,随加载速率的增加,劈裂面逐渐增多;600℃时,石灰岩岩样在不同加载速率下均为剪切破坏。  相似文献   

18.
为了提高锚杆的承载力,采用小颗粒豆石混凝土替代水泥砂浆作为锚固剂,并在锚杆锚固段增加锚刺,进行了锚杆承载力拉拔试验,重点研究了异型锚杆承载力与锚刺层数、豆石混凝土强度、试块尺寸之间的关系。结果表明:改变锚杆杆体结构型式对提高其承载力效果显著,单层锚刺锚杆承载力是光杆的1.2~1.7倍;在锚刺强度一定条件下异型锚杆承载力与豆石混凝土强度呈非线性关系,但随着混凝土强度的增大承载力提升幅度越来越小;单层锚刺条件下,锚杆承载力随着试块尺寸增大而增大,说明锚刺强度一定时其承载力与混凝土厚度正相关。  相似文献   

19.
在室内进行了自制压力型锚固试件的锚固界面拉拔蠕变试验,用应变仪测得了试件锚固段上各监测点的实时应变,给出了锚固界面蠕变曲线及各监测位置的等时荷载—应变曲线。对曲线特征分析得到:同一监测点位置应力越大,应变越大,且应变随时间的增长逐渐增大;加载过程中锚固系统经历黏弹、黏塑和黏脱阶段后,最终沿锚固界面发生剪切拉拔破坏。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号