首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The sinking of particulate organic matter from the euphotic zone is an important pathway for the vertical transport of many elements and organic compounds in the sea. Many natural and artificial radionuclides in surface waters are readily adsorbed onto suspended particles and are presumably scavenged and removed to depth on time scales commensurate with both particle sinking rate and retention time of the radionuclide on the particle. Previously, abyssal benthic organisms from the northeast Pacific were found to contain short-lived fission products which entered the sea surface as fallout from nuclear testing. The presence of these radionuclides at great depth could not be explained by Stokesian settling of small fallout particles and it was hypothesized that zooplankton grazing in the surface layers packaged these particle-reactive radionuclides into large, relatively dense faecal pellets which rapidly sank to depth. We report here data from a time-series sediment trap experiment and concomitant zooplankton collections which show conclusively that Chernobyl radioactivity, in particular the rare earth nuclides 141Ce and 144Ce, entering the Mediterranean as a single pulse, was rapidly removed from surface waters and transported to 200 m in a few days primarily by zooplankton grazing.  相似文献   

2.
The warmest global climates of the past 65 million years occurred during the early Eocene epoch (about 55 to 48 million years ago), when the Equator-to-pole temperature gradients were much smaller than today and atmospheric carbon dioxide levels were in excess of one thousand parts per million by volume. Recently the early Eocene has received considerable interest because it may provide insight into the response of Earth's climate and biosphere to the high atmospheric carbon dioxide levels that are expected in the near future as a consequence of unabated anthropogenic carbon emissions. Climatic conditions of the early Eocene 'greenhouse world', however, are poorly constrained in critical regions, particularly Antarctica. Here we present a well-dated record of early Eocene climate on Antarctica from an ocean sediment core recovered off the Wilkes Land coast of East Antarctica. The information from biotic climate proxies (pollen and spores) and independent organic geochemical climate proxies (indices based on branched tetraether lipids) yields quantitative, seasonal temperature reconstructions for the early Eocene greenhouse world on Antarctica. We show that the climate in lowland settings along the Wilkes Land coast (at a palaeolatitude of about 70° south) supported the growth of highly diverse, near-tropical forests characterized by mesothermal to megathermal floral elements including palms and Bombacoideae. Notably, winters were extremely mild (warmer than 10?°C) and essentially frost-free despite polar darkness, which provides a critical new constraint for the validation of climate models and for understanding the response of high-latitude terrestrial ecosystems to increased carbon dioxide forcing.  相似文献   

3.
The large difference in carbon and oxygen isotope data from the marine record between marine oxygen isotope stage 12 (MIS 12) and MIS 11, spanning the interval between about 480 and 380 kyr ago, has been interpreted as a transition between an extremely cold glacial period and an unusually warm interglacial period, with consequences for global ice volume, sea level and the global carbon cycle. The extent of the change is intriguing, because orbital forcing is predicted to have been relatively weak at that time. Here we analyse a continuous sediment record from Lake Baikal, Siberia, which reveals a virtually continuous interglacial diatom assemblage, a stable littoral benthic diatom assemblage and lithogenic sediments with 'interglacial' characteristics for the period from MIS 15a to MIS 11 (from about 580 to 380 kyr ago). From these data, we infer significantly weaker climate contrasts between MIS 12 and 11 than during more recent glacial-interglacial transitions in the late Pleistocene epoch (about 130 to 10 kyr ago). For the period from MIS 15a to MIS 11, we also infer an apparent lack of extensive mountain glaciation.  相似文献   

4.
Respiration in the open ocean   总被引:11,自引:0,他引:11  
del Giorgio PA  Duarte CM 《Nature》2002,420(6914):379-384
A key question when trying to understand the global carbon cycle is whether the oceans are net sources or sinks of carbon. This will depend on the production of organic matter relative to the decomposition due to biological respiration. Estimates of respiration are available for the top layers, the mesopelagic layer, and the abyssal waters and sediments of various ocean regions. Although the total open ocean respiration is uncertain, it is probably substantially greater than most current estimates of particulate organic matter production. Nevertheless, whether the biota act as a net source or sink of carbon remains an open question.  相似文献   

5.
固碳过程对于改善土壤质量、维持农田生态系统、保障全球粮食安全、缓解气候变化趋势等至关重要。本文介绍了农田土壤的生物与非生物固碳过程,阐述了土壤质地、水热变化、全球变暖和人为因素对农田土壤固碳过程的影响。总结了目前较受重视的一些农田固碳措施(施肥、灌溉、秸秆还田、生物炭质施入等)及其对农田土壤固碳能力的改善和应用中存在的问题,并对今后的相关研究作出展望。  相似文献   

6.
以“低碳经济”,“低碳生活”等为主要内容的低碳论,认为以化石燃料为主的高碳经济是造成全球气候变暖的主要原因,而气候变暖将会给人类带来生态大灾难。因此,人们必须学习低碳知识,开发低碳能源,实施低碳经济,实践低碳生活。实际上,低碳论基本上是“气候变暖”论的翻版,只不过增加了低碳的内容。理论和实践可以证明,地球气候变暖与人类活动排放二氧化碳,没有完全的正相关关系;二氧化碳并不是气候变化的主要原因,更不是导致全球变暖的罪魁祸首。历史事实表明,温暖的气候更有利于人类社会的进步和生产力的发展,而不会给人类带来灾难性的后果。节能减排是我国能源开发利用的战略方针。目前,我国能源开发利用的主要问题是:能源资源消费数量巨大,能源利用效率低,污染物排放量大,大气环境污染问题严重。节能减排与“低碳经济”不是同一个概念。节能减排战略的减排对象是大气污染物;“低碳经济”的减排对象则是人为活动排放的二氧化碳。目前,二氧化碳,还没有被国家列入大气污染物。节能减排与二氧化碳的排放没有直接关系。以“低碳经济”,“低碳生活”等为主要内容的低碳论,缺少足够的科学理论基础和充分的事实依据。  相似文献   

7.
Eocene bipolar glaciation associated with global carbon cycle changes   总被引:2,自引:0,他引:2  
Tripati A  Backman J  Elderfield H  Ferretti P 《Nature》2005,436(7049):341-346
The transition from the extreme global warmth of the early Eocene 'greenhouse' climate approximately 55 million years ago to the present glaciated state is one of the most prominent changes in Earth's climatic evolution. It is widely accepted that large ice sheets first appeared on Antarctica approximately 34 million years ago, coincident with decreasing atmospheric carbon dioxide concentrations and a deepening of the calcite compensation depth in the world's oceans, and that glaciation in the Northern Hemisphere began much later, between 10 and 6 million years ago. Here we present records of sediment and foraminiferal geochemistry covering the greenhouse-icehouse climate transition. We report evidence for synchronous deepening and subsequent oscillations in the calcite compensation depth in the tropical Pacific and South Atlantic oceans from approximately 42 million years ago, with a permanent deepening 34 million years ago. The most prominent variations in the calcite compensation depth coincide with changes in seawater oxygen isotope ratios of up to 1.5 per mil, suggesting a lowering of global sea level through significant storage of ice in both hemispheres by at least 100 to 125 metres. Variations in benthic carbon isotope ratios of up to approximately 1.4 per mil occurred at the same time, indicating large changes in carbon cycling. We suggest that the greenhouse-icehouse transition was closely coupled to the evolution of atmospheric carbon dioxide, and that negative carbon cycle feedbacks may have prevented the permanent establishment of large ice sheets earlier than 34 million years ago.  相似文献   

8.
本文根据钚同位素的海洋地球化学行为,提出了钚从海水到沉积物的连续输入模式,讨论了层段输入因子与深海沉积物混合速率的关系,并计算了一个深海站位沉积物的混合速率.该站位沉积物与海水界面层混合速率147cm~2/kyr,近表层低混合区平均混合速率119cm~2/kyr,次表层高混合区平均混合速率343cm~2/kyr,反映了深海沉积物混合层中各层段混合状态的差异.  相似文献   

9.
Atmospheric carbon dioxide concentrations were significantly lower during glacial periods than during intervening interglacial periods, but the mechanisms responsible for this difference remain uncertain. Many recent explanations call on greater carbon storage in a poorly ventilated deep ocean during glacial periods, but direct evidence regarding the ventilation and respired carbon content of the glacial deep ocean is sparse and often equivocal. Here we present sedimentary geochemical records from sites spanning the deep subarctic Pacific that--together with previously published results--show that a poorly ventilated water mass containing a high concentration of respired carbon dioxide occupied the North Pacific abyss during the Last Glacial Maximum. Despite an inferred increase in deep Southern Ocean ventilation during the first step of the deglaciation (18,000-15,000 years ago), we find no evidence for improved ventilation in the abyssal subarctic Pacific until a rapid transition approximately 14,600 years ago: this change was accompanied by an acceleration of export production from the surface waters above but only a small increase in atmospheric carbon dioxide concentration. We speculate that these changes were mechanistically linked to a roughly coeval increase in deep water formation in the North Atlantic, which flushed respired carbon dioxide from northern abyssal waters, but also increased the supply of nutrients to the upper ocean, leading to greater carbon dioxide sequestration at mid-depths and stalling the rise of atmospheric carbon dioxide concentrations. Our findings are qualitatively consistent with hypotheses invoking a deglacial flushing of respired carbon dioxide from an isolated, deep ocean reservoir, but suggest that the reservoir may have been released in stages, as vigorous deep water ventilation switched between North Atlantic and Southern Ocean source regions.  相似文献   

10.
Stott LD  Berelson W  Douglas R  Gorsline D 《Nature》2000,407(6802):367-370
Concentrations of dissolved oxygen in the ocean seem to correlate well with climate instabilities over the past 100,000 years. For example, the concentration of dissolved oxygen in Pacific intermediate waters was considerably higher during Pleistocene glacial periods than it is today. This has been inferred from the presence of bioturbated sediments, implying that oxygen levels were sufficient for burrowing organisms to live. Today, basins in the northeastern Pacific Ocean are floored by laminated sediments implying lower oxygen levels, which may be explained by reduced ventilation. Here we report a recent return to bioturbated sediments in the northeastern Pacific Ocean since the late 1970s. From the carbon isotope composition of benthic foraminifers living in the sediment, we infer a twofold decrease in the carbon oxidation rate occurring within sediments, equivalent to an increase in dissolved oxygen concentration of 15-20 micromoles per litre. These changes, at the edges of the Santa Barbara, Santa Monica and Alfonso basins, are coincident with a change in North Pacific climate which has reduced upwelling by 20-30% and increased sea surface temperatures by 1.5-3 degrees C. This suggests that climate effects on surface productivity, reducing the supply organic matter to sediments, may have had a greater effect on benthic oxygen levels than changes in ocean circulation patterns.  相似文献   

11.
水文脉冲影响着湖泊水生态系统,人工调水工程引起的水文脉冲使这种影响更加复杂. 本研究分别调研了南四湖在非调水期和调水期内的浮游植物和大型底栖动物以及相应的水质和底泥中的重金属,分析了调水引起的水文脉冲影响下浮游植物和大型底栖动物群落的变化特征. 结果显示:在一个脉冲周期内,调水期的浮游植物总密度减小,群落中蓝藻门占比下降,而绿藻门和硅藻门占比增加,优势种更替剧烈,这些变化更多的是由脉冲式调水引起的水质改变和季节变化引起的温度差异共同导致的. 南四湖中大型底栖动物群落主要包括软体动物、水生昆虫类和水生寡毛类,且由软体动物主导. 一个脉冲周期内的大型底栖动物群落结构稳定,优势种更替较弱,物种多样性指数变化较小. 对比南水北调工程实施之前的结果,南四湖中浮游植物群落年内变化更明显,且物种多样性整体下降. 大型底栖动物群落随着水质的优化和底泥中重金属分布的改变,逐渐由小体型的水生昆虫主导变为由大体型的软体动物主导. 这些结果表明调水引起的水文脉冲对浮游植物的影响在短期和长期均有明显体现,对大型底栖动物更多的体现在长期累积性影响.   相似文献   

12.
Changes in iron supply to oceanic plankton are thought to have a significant effect on concentrations of atmospheric carbon dioxide by altering rates of carbon sequestration, a theory known as the 'iron hypothesis'. For this reason, it is important to understand the response of pelagic biota to increased iron supply. Here we report the results of a mesoscale iron fertilization experiment in the polar Southern Ocean, where the potential to sequester iron-elevated algal carbon is probably greatest. Increased iron supply led to elevated phytoplankton biomass and rates of photosynthesis in surface waters, causing a large drawdown of carbon dioxide and macronutrients, and elevated dimethyl sulphide levels after 13 days. This drawdown was mostly due to the proliferation of diatom stocks. But downward export of biogenic carbon was not increased. Moreover, satellite observations of this massive bloom 30 days later, suggest that a sufficient proportion of the added iron was retained in surface waters. Our findings demonstrate that iron supply controls phytoplankton growth and community composition during summer in these polar Southern Ocean waters, but the fate of algal carbon remains unknown and depends on the interplay between the processes controlling export, remineralisation and timescales of water mass subduction.  相似文献   

13.
The tropical oceans are important source areas for global heat and water vapor transport, and changes in tropical sea surface tem-perature (SST) will have important impacts on high-latitude and global climate change. It is crucial to establish the precise phase relationship between tropical and high-latitude climate variability to gain insight into the mechanisms of global climate change. Here, we present multi-proxy records across the penultimate deglaciation (Termination II) from sediment Core SO18459, which is located in the outflow area of the Indonesian Throughflow (ITF) of the Timor Sea. These proxy records include planktonic and benthic foraminifera δ18O, planktonic foraminifera G. ruber Mg/Ca-derived SST, and δ18Ow of sea surface water. The Mg/Ca-SST records indicate a warming of 4.1°C in the Timor Sea over Termination II, which is in phase with decrease in planktonic and benthic δ18O. Our results suggest that at millennial timescales, climate change of the tropical oceans is synchronous with high-latitude ice volume changes. Furthermore, warming of the Timor Sea is almost simultaneous with warming of the Antarctic, suggesting a rapid heat transfer from the tropics to the Antarctic via the atmosphere and/or ocean circulations. The G. ruber δ18O and SST records of Core SO18459 show a marked YD-like event during Termination II, which is probably caused by decrease in Australian rainfall or strengthening of the Western Pacific Warm Pool. However, a similar YD-like event is not observed in East Asian rainfall records. This discrepancy indicates that different tropical climate systems may have different responses to the same forcing, such as El Niño Southern Oscillation. A similar YD-like event is observed in the global benthic foraminiferal δ18O records during Termination II, implying teleconnection of millennial scale climate change between the tropical regions and high latitudes.  相似文献   

14.
The start of the Palaeocene/Eocene thermal maximum--a period of exceptional global warming about 55 million years ago--is marked by a prominent negative carbon isotope excursion that reflects a massive input of 13C-depleted ('light') carbon to the ocean-atmosphere system. It is often assumed that this carbon injection initiated the rapid increase in global surface temperatures and environmental change that characterize the climate perturbation, but the exact sequence of events remains uncertain. Here we present chemical and biotic records of environmental change across the Palaeocene/Eocene boundary from two sediment sections in New Jersey that have high sediment accumulation rates. We show that the onsets of environmental change (as recorded by the abundant occurrence ('acme') of the dinoflagellate cyst Apectodinium) and of surface-ocean warming (as evidenced by the palaeothermometer TEX86) preceded the light carbon injection by several thousand years. The onset of the Apectodinium acme also precedes the carbon isotope excursion in sections from the southwest Pacific Ocean and the North Sea, indicating that the early onset of environmental change was not confined to the New Jersey shelf. The lag of approximately 3,000 years between the onset of warming in New Jersey shelf waters and the carbon isotope excursion is consistent with the hypothesis that bottom water warming caused the injection of 13C-depleted carbon by triggering the dissociation of submarine methane hydrates, but the cause of the early warming remains uncertain.  相似文献   

15.
通过测定不同季节北京大学未名湖不同区域的水质指标,发现在无显著人为外源影响的条件下,水体氮相关指标较好,四季全部采样点的氨氮都优于Ⅱ类水指标,总氮都优于Ⅳ类水指标,但COD,TP和DO等指标在有的采样点仅达到、甚至劣于Ⅴ类。未名湖的平均综合营养状态指数(TLI)为56.1,属于轻度富营养化。利用PCR-DGGE分析未名湖的底泥微生物群落,结果表明其多样性随季节变化较明显,春、秋季多样性指数都较高,夏、秋季多样性指数与地理位置及水体营养盐含量呈显著正相关关系。线性回归结果提示未名湖底泥微生物群落可能受藻类固氮作用的影响。  相似文献   

16.
Sensitivity of the Pacific subtropical-tropical meridional cell to global warming is examined by using a global ocean-atmosphere coupled model developed at LASG/IAP. Results indicate that associated with the increasing of atmospheric carbon dioxide, the most prominent signals of global warming locate at high latitudes, and the change of middle and low latitudes, in particular the surface wind, is relatively weak, which leads to a weak response of the Pacific subtropical-tropical meridional cell. At the time of atmospheric carbon dioxide doubling, the change of the meridional cell strength is smaller than the amplitude of natural variability.  相似文献   

17.
Garrett TJ  Zhao C 《Nature》2006,440(7085):787-789
There is consensus among climate models that Arctic climate is particularly sensitive to anthropogenic greenhouse gases and that, over the next century, Arctic surface temperatures are projected to rise at a rate about twice the global mean. The response of Arctic surface temperatures to greenhouse gas thermal emission is modified by Northern Hemisphere synoptic meteorology and local radiative processes. Aerosols may play a contributing factor through changes to cloud radiative properties. Here we evaluate a previously suggested contribution of anthropogenic aerosols to cloud emission and surface temperatures in the Arctic. Using four years of ground-based aerosol and radiation measurements obtained near Barrow, Alaska, we show that, where thin water clouds and pollution are coincident, there is an increase in cloud longwave emissivity resulting from elevated haze levels. This results in an estimated surface warming under cloudy skies of between 3.3 and 5.2 W m(-2) or 1 and 1.6 degrees C. Arctic climate is closely tied to cloud longwave emission, but feedback mechanisms in the system are complex and the actual climate response to the described sensitivity remains to be evaluated.  相似文献   

18.
It is now widely accepted that carbon emission from human activities is an important driving force in global warming, and global change has a deep impact on sustainable development of human society. To meet the challenges of global change, the international community has reached a consensus that developed countries take strict actions in emission reduction, whereas developing countries take spontaneous efforts in reducing emissions under the guiding principle of common but differentiated responsibilities, with an agreed goal to restrict global surface temperature increase due to human activities to within 2℃ of pre-industrial levels. However, there is no clear pathway to reach this goal. A number of related questions must be addressed on principles to be followed, research emphasis and policy measures. Here we argue that response policies to address global change issues must be based on balanced development at regional and international levels, and on advancements in science and technology. This requires consideration of harmony not only between humans and nature but also within human societies, to properly deal with the relationship between global change and sustainable development. We must make equal efforts toward carbon emission reduction and carbon sequestration, and toward mitigation and adaptation. There should be more research support to reduce uncertainties in our understanding of global change. Addressing the challenges of global change creates great opportunities for the development of human society. This will facilitate transformation of energy use structure, improve and restore ecological functioning of the earth environment, transform production modes and ways of living in human society, and promote harmonic and balanced development at regional and international levels.  相似文献   

19.
Major viral impact on the functioning of benthic deep-sea ecosystems   总被引:3,自引:0,他引:3  
Viruses are the most abundant biological organisms of the world's oceans. Viral infections are a substantial source of mortality in a range of organisms-including autotrophic and heterotrophic plankton-but their impact on the deep ocean and benthic biosphere is completely unknown. Here we report that viral production in deep-sea benthic ecosystems worldwide is extremely high, and that viral infections are responsible for the abatement of 80% of prokaryotic heterotrophic production. Virus-induced prokaryotic mortality increases with increasing water depth, and beneath a depth of 1,000 m nearly all of the prokaryotic heterotrophic production is transformed into organic detritus. The viral shunt, releasing on a global scale approximately 0.37-0.63 gigatonnes of carbon per year, is an essential source of labile organic detritus in the deep-sea ecosystems. This process sustains a high prokaryotic biomass and provides an important contribution to prokaryotic metabolism, allowing the system to cope with the severe organic resource limitation of deep-sea ecosystems. Our results indicate that viruses have an important role in global biogeochemical cycles, in deep-sea metabolism and the overall functioning of the largest ecosystem of our biosphere.  相似文献   

20.
Zooxanthellae, endosymbiotic algae of reef-building corals, substantially contribute to the high gross primary production of coral reefs, but corals exude up to half of the carbon assimilated by their zooxanthellae as mucus. Here we show that released coral mucus efficiently traps organic matter from the water column and rapidly carries energy and nutrients to the reef lagoon sediment, which acts as a biocatalytic mineralizing filter. In the Great Barrier Reef, the dominant genus of hard corals, Acropora, exudes up to 4.8 litres of mucus per square metre of reef area per day. Between 56% and 80% of this mucus dissolves in the reef water, which is filtered through the lagoon sands. Here, coral mucus is degraded at a turnover rate of at least 7% per hour. Detached undissolved mucus traps suspended particles, increasing its initial organic carbon and nitrogen content by three orders of magnitude within 2 h. Tidal currents concentrate these mucus aggregates into the lagoon, where they rapidly settle. Coral mucus provides light energy harvested by the zooxanthellae and trapped particles to the heterotrophic reef community, thereby establishing a recycling loop that supports benthic life, while reducing loss of energy and nutrients from the reef ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号