首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 639 毫秒
1.
2.
3.
NAK is an IkappaB kinase-activating kinase   总被引:13,自引:0,他引:13  
  相似文献   

4.
5.
Rossi A  Kapahi P  Natoli G  Takahashi T  Chen Y  Karin M  Santoro MG 《Nature》2000,403(6765):103-108
NF-kappaB is a critical activator of genes involved in inflammation and immunity. Pro-inflammatory cytokines activate the IkappaB kinase (IKK) complex that phosphorylates the NF-kappaB inhibitors, triggering their conjugation with ubiquitin and subsequent degradation. Freed NF-kappaB dimers translocate to the nucleus and induce target genes, including the one for cyclo-oxygenase 2 (COX2), which catalyses the synthesis of pro-inflammatory prostaglandins, in particular PGE. At late stages of inflammatory episodes, however, COX2 directs the synthesis of anti-inflammatory cyclopentenone prostaglandins, suggesting a role for these molecules in the resolution of inflammation. Cyclopentenone prostaglandins have been suggested to exert anti-inflammatory activity through the activation of peroxisome proliferator-activated receptor-gamma. Here we demonstrate a novel mechanism of antiinflammatory activity which is based on the direct inhibition and modification of the IKKbeta subunit of IKK. As IKKbeta is responsible for the activation of NF-kappaB by pro-inflammatory stimuli, our findings explain how cyclopentenone prostaglandins function and can be used to improve the utility of COX2 inhibitors.  相似文献   

6.
7.
NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling.   总被引:56,自引:0,他引:56  
J A Romashkova  S S Makarov 《Nature》1999,401(6748):86-90
  相似文献   

8.
IKKalpha controls formation of the epidermis independently of NF-kappaB   总被引:16,自引:0,他引:16  
Hu Y  Baud V  Oga T  Kim KI  Yoshida K  Karin M 《Nature》2001,410(6829):710-714
The IKKalpha and IKKbeta catalytic subunits of IkappaB kinase (IKK) share 51% amino-acid identity and similar biochemical activities: they both phosphorylate IkappaB proteins at serines that trigger their degradation. IKKalpha and IKKbeta differ, however, in their physiological functions. IKKbeta and the IKKgamma/NEMO regulatory subunit are required for activating NF-kappaB by pro-inflammatory stimuli and preventing apoptosis induced by tumour necrosis factor-alpha (refs 5,6,7,8,9,10,11). IKKalpha is dispensable for these functions, but is essential for developing the epidermis and its derivatives. The mammalian epidermis is composed of the basal, spinous, granular and cornified layers. Only basal keratinocytes can proliferate and give rise to differentiated derivatives, which on full maturation undergo enucleation to generate the cornified layer. Curiously, keratinocyte-specific inhibition of NF-kappaB, as in Ikkalpha-/- mice, results in epidermal thickening but does not block terminal differentiation. It has been proposed that the epidermal defect in Ikkalpha-/- mice may be due to the failed activation of NF-kappaB. Here we show that the unique function of IKKalpha in control of keratinocyte differentiation is not exerted through its IkappaB kinase activity or through NF-kappaB. Instead, IKKalpha controls production of a soluble factor that induces keratinocyte differentiation.  相似文献   

9.
Inhibition of JNK activation through NF-kappaB target genes.   总被引:26,自引:0,他引:26  
G Tang  Y Minemoto  B Dibling  N H Purcell  Z Li  M Karin  A Lin 《Nature》2001,414(6861):313-317
  相似文献   

10.
11.
12.
13.
TAK1 is a ubiquitin-dependent kinase of MKK and IKK.   总被引:72,自引:0,他引:72  
C Wang  L Deng  M Hong  G R Akkaraju  J Inoue  Z J Chen 《Nature》2001,412(6844):346-351
TRAF6 is a signal transducer that activates IkappaB kinase (IKK) and Jun amino-terminal kinase (JNK) in response to pro-inflammatory mediators such as interleukin-1 (IL-1) and lipopolysaccharides (LPS). IKK activation by TRAF6 requires two intermediary factors, TRAF6-regulated IKK activator 1 (TRIKA1) and TRIKA2 (ref. 5). TRIKA1 is a dimeric ubiquitin-conjugating enzyme complex composed of Ubc13 and Uev1A (or the functionally equivalent Mms2). This Ubc complex, together with TRAF6, catalyses the formation of a Lys 63 (K63)-linked polyubiquitin chain that mediates IKK activation through a unique proteasome-independent mechanism. Here we report the purification and identification of TRIKA2, which is composed of TAK1, TAB1 and TAB2, a protein kinase complex previously implicated in IKK activation through an unknown mechanism. We find that the TAK1 kinase complex phosphorylates and activates IKK in a manner that depends on TRAF6 and Ubc13-Uev1A. Moreover, the activity of TAK1 to phosphorylate MKK6, which activates the JNK-p38 kinase pathway, is directly regulated by K63-linked polyubiquitination. We also provide evidence that TRAF6 is conjugated by the K63 polyubiquitin chains. These results indicate that ubiquitination has an important regulatory role in stress response pathways, including those of IKK and JNK.  相似文献   

14.
15.
16.
E De Smaele  F Zazzeroni  S Papa  D U Nguyen  R Jin  J Jones  R Cong  G Franzoso 《Nature》2001,414(6861):308-313
  相似文献   

17.
Sil AK  Maeda S  Sano Y  Roop DR  Karin M 《Nature》2004,428(6983):660-664
IkappaB kinase-alpha (IKK-alpha) exhibits protein-kinase-dependent and -independent functions. Its kinase activity is required for lymphoid organogenesis and mammary gland development, whereas a kinase-independent activity is required for epidermal keratinocyte differentiation. In addition to failed epidermal differentiation, IKK-alpha-deficient mice exhibit abnormal skeletal and craniofacial morphogenesis. As similar defects are not exhibited by mice that experience systemic inhibition of NF-kappaB, we postulated that the morphogenetic defects in IKK-alpha-deficient mice are not caused by reduced NF-kappaB activity but instead are due to failed epidermal differentiation that disrupts proper epidermal-mesodermal interactions. We tested this hypothesis by introducing an epidermal-specific Ikka (also known as Chuk) transgene into IKK-alpha-deficient mice. Mice lacking IKK-alpha in all cell types including bone and cartilage, but not in basal epidermal keratinocytes, exhibit normal epidermal differentiation and skeletal morphology. Thus, epidermal differentiation is required for proper morphogenesis of mesodermally derived skeletal elements. One way by which IKK-alpha controls skeletal and craniofacial morphogenesis is by repressing expression of fibroblast growth factor (FGF) family members, such as FGF8, whose expression is specifically elevated in the limb bud ectoderm of IKK-alpha-deficient mice.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号