首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electron dynamics in collisionless magnetic reconnection   总被引:1,自引:0,他引:1  
Magnetic reconnection provides a physical mechanism for fast energy conversion from magnetic energy to plasma kinetic energy. It is closely associated with many explosive phenomena in space plasma, usually collisionless in character. For this reason, researchers have become more interested in collisionless magnetic reconnection. In this paper, the various roles of electron dynamics in collisionless magnetic reconnection are reviewed. First, at the ion inertial length scale, ions and electrons are decoupled. The resulting Hall effect determines the reconnection electric field. Moreover, electron motions determine the current system inside the reconnection plane and the electron density cavity along the separatrices. The current system in this plane produces an out-of-plane magnetic field. Second, at the electron inertial length scale, the anisotropy of electron pressure determines the magnitude of the reconnection electric field in this region. The production of energetic electrons, which is an important characteristic during magnetic reconnection, is accelerated by the reconnection electric field. In addition, the different topologies, temporal evolution and spatial distribution of the magnetic field affect the accelerating process of electrons and determine the final energy of the accelerated electrons. Third, we discuss results from simulations and spacecraft observations on the secondary magnetic islands produced due to secondary instabilities around the X point, and the associated energetic electrons. Furthermore, progress in laboratory plasma studies is also discussed in regard to electron dynamics during magnetic reconnection. Finally, some unresolved problems are presented.  相似文献   

2.
The characteristics of low-frequency waves in magnetic reconnection are studied using two-dimensional hybrid simulation code. In a coordinate system moving with fluid,the time series of a magnetic field perpendicular to the magnetic reconnection plane,By, is transformed into the power spectrum via fast Fourier transformation,while the wave propagation direction and polarization are determined by minimum variance analysis of the electric field.The results show that low-frequency Alfvén ion-cyclotron waves dominate the reconnection area.These waves have frequencies 0-1Ωp(where Ωp is the local proton gyro frequency)and all are left-handed circularly polarized.Among these waves,large-amplitude turbulence,with frequencies of 0-0.6Ωp and isotropic propagation,dominates the outflow regions.This can cause the reversal of By in the quadrupole structure.In the inflow regions, dominant waves,propagating mainly parallel to the ambient magnetic field,have higher frequencies and smaller amplitudes.The frequency of the main peak of wave energy is usually higher than 0.5Ωp.  相似文献   

3.
The process of magnetic reconnection in non-periodic three-layer current sheets is studied numerically by using two-dimensional magnetohydrodynamic simulation. The results show that unlike periodic current sheets, it is complex unsteady magnetic reconnection. It may be important for solar flare and corona heating.  相似文献   

4.
As an essential mechanism in large scale fast magnetic energy releases and field reconfigurations processes in space,astrophysical, and laboratory plasmas,magnetic reconnection,particularly collisionless magnetic reconnection,has been studied for more than 65 years.Many progresses have been achieved in recent years and basic features of the process have been well understood,largely due to more and more satellite observation data available in the last decade.However,a few outstanding issues are still remained unresolved.We in the paper review the development of collisionless magnetic reconnection studies and major achievements in recent years,and also briefly discuss the open questions remained to be answered in studies of collisionless magnetic reconnection.  相似文献   

5.
Magnetic reconnection is a very important and fundamental plasma process in transferring energy from magnetic field into plasma. Previous theory, numerical simulations and observations mostly concentrate on 2-dimensional (2D) model; however, magnetic reconnection is a 3-dimensional (3D) nonlinear process in nature. The properties of reconnection in 3D and its associated singular structure have not been resolved completely. Here we investigate the structures and charactedstics of null points inside the reconnection diffusion region by introducing the discretized Poincar6 index through Gauss integral and using magnetic field data with high resolution from the four satellites of Cluster mission. We estimate the velocity and trajectory of null points by calculating its position in different times, and compare and discuss the observations with different reconnection models with null points based on characteristics of electric current around null points.  相似文献   

6.
Two-dimensional particle-in-cell (PIC) simulation is used to investigate electron dynamics in collisionless magnetic reconnection, and the proton/electron mass ratio is taken to be m i /m e = 256. The results show that the presence of a strong initial guide field will change the direction of the electron flow. The electron density cavities and the parallel electric field can be found in the electron inflow region along the separatrix, and the electron inflow and density cavities only appear in the second and fourth quadrants. What is different from the results with a smaller mass ratio is that new structures appear in the diffusion region near the X line: (1) Narrow regions of density enhancement and density cavities can be found synchronously in this region; and (2) corresponding to the electron density changes near the X line, the strong parallel electric fields are found to occur in the first and third quadrants. These electric fields perhaps play a more important role in acceleration and heating electrons than those fields located in the density cavities. Supported by National Natural Science Foundation of China (Grant No. 40725013) and Open Research Program Foundation of State Key Laboratory for Space Weather, Chinese Academy Sciences  相似文献   

7.
磁螺度应用到天体物理尤其是太阳物理上,从而变为一个热门的领域.螺度用以描述磁场的复杂结构,例如磁场的扭曲、缠绕、连结、编辫,作为一个物理量,与能量不同,在完全理想的磁流体力学(MHD)中,它是一个守恒量.在磁重联过程中,螺度近似守恒,应用到太阳大气上,可以计算磁螺度的传输.最近的观测发现在太阳上螺度存在南北半球的不对称性,北半球主要为负螺度,南半球正螺度占优势;阐述了在太阳大气不同层次这种不对称性的表现形式,并介绍了对这种规律的有代表性的解释;介绍了国际国内螺度研究的最新进展,指出了有待于解决的一些关键问题.  相似文献   

8.
Magnetic reconnection is an important universal plasma dissipation process that converts magnetic energy into plasma thermal and kinetic energy,and simultaneously changes the magnetic field topology.In this paper,we report the first observation of energetic electrons associated with asymmetric reconnection in the sheath of an interplanetary coronal mass ejection.The magnetic field shear angle was about 151°,implying guide-field reconnection.The width of the exhaust was about 8×104 km.The reconnection rate was estimated as 0.044-0.08,which is consistent with fast reconnection theory and previous observations.We observed flux enhancements of energetic electrons with energy up to 400 keV in this reconnection exhaust.The region where ener- getic electron fluxes were enhanced is located at one pair of separatrices in the higher density hemisphere.We discuss these observation results,and compare with previous observations and recent kinetic simulations.  相似文献   

9.
A class of pseudo-reconnections caused by a shifted mesh in magnetohydrodynamics (MHD) simulations is reported. In terms of this mesh system, some non-physical results may be obtained in certain circumstances, e.g. magnetic reconnection occurs without resistivity. After comparison, another kind of mesh is strongly recommended.  相似文献   

10.
Two-dimensional particle-in-cell simulations are performed to investigate the formation of electron density depletions in collisionless magnetic reconnection.In anti-parallel reconnection,the quadrupole structures of the out-of-plane magnetic field are formed,and four symmetric electron density depletion layers can be found along the separatrices due to the effects of magetic mirror.With the increase of the initial guide field,the symmetry of both the out-of-plane magnetic field and electron density depletion layers is distorted.When the initial guide field is sufficiently large,the electron density depletion layers along the lower left and upper right separatrices disappear.The parallel electric field in guide field reconnection is found to play an important role in forming such structures of the electron density depletion layers.The structures of the out-of-plane magnetic field By and electron depletion layers in anti-parallel and guide field reconnection are found to be related to electron flow or in-plane currents in the separatrix regions.In anti-parallel reconnection,electrons flow towards the X line along the separatrices,and are directed away from the X line along the magnetic field lines just inside the separatrices.In guide field reconnection,electrons can only flow towards the X line along the upper left and lower right separatrices due to the existence of the parallel electric field in these regions.  相似文献   

11.
12.
Mechanism for magnetic energy release in solar flares   总被引:1,自引:0,他引:1  
《科学通报(英文版)》1995,40(23):1983-1983
  相似文献   

13.
When the IMF turns southward, a great amount of magnetic energy is stored in the magnetotail, and the electric field across the magnetotail substantially enhances. As long as magnetic reconnection (MR) in the magnetotail initiates and continues, the magnetic field and plasma in the central plasma sheet are carried away to the near-Earth and down to the tail, the magnetic field and plasma in the lobe region enter the CPS and are involved in MR. We call this process “Continuous Lobe Reconnection (CLR)”. In this paper a detailed analysis of Cluster observation of MR through 2001--2003 is made. Plenty of CLR events are found that led to considerable changes of tail configuration, appearance of BBF, as well as large-scale bubbles in which both plasma temperature and number density substantially decrease. It is shown that in general CLR events last for dozens of minutes and have good correspondence to substorm initiation under the condition of continuous southward IMF.  相似文献   

14.
In collisionless reconnection,the magnetic field near the separatrix is stronger than that around the X-line,so an electron-beam can be formed and flows toward the X-line,which leads to a decrease of the electron density near the separatrix.Having been accelerated around the X-line,the electrons flow out along the magnetic field lines in the inner side of the separatrix.A quadruple structure of the Hall magnetic field By is formed by such a current system.A 2D particle-in-cell (PIC) simulation code is used ...  相似文献   

15.
It is proposed that local and transient reconnection in the plasma boundary layer can be caused by the impact and switch-off of non-homogenous dynamic pressure. Magnetohydrodynamic simulation is used to investigate the reconnection processes in these two cases. It is found that if the inflow is homogeneous, the reconnection will not take place; if the inflow is a shearing flow, no matter how great the shear of the flow is, the reconnection can be caused either during or after the impacting period. It is pointed out that a sudden stop of external force may be an important triggering mechanism of energy transformation and reconnection in the plasma boundary layer region.  相似文献   

16.
The third order accurate upwind compact difference scheme has been applied to the numerical study of the magnetic reconnection process possibly occurring near the interplanetary current sheet, under the framework of the two-dimensional compressible magnetohydrodynamics (MHD). Our results here show that the driven reconnection near the current sheet can occur within 10—30 min for the interplanetary high magnetic Reynolds number, RM =2 000—10 000, the stable magnetic reconnection structure can be formed in hour-order of magnitude, and there are some ba- sic properties such as the multiple X-line reconnections, vortical velocity structures, filament current systems, splitting and collapse of the high-density plasma bulk. These results are helpful in understanding and identifying the magnetic reconnection phenomena near the interplanetary current sheets.  相似文献   

17.
提出一种给予重连接用户以较高优先级的无线接入控制算法,给出一次重连接阻塞率与二次重连接阻塞率两个新的无线QoS指标.仿真结果表明,重连接情况会给网络的性能带来很大的影响,重连接优先接入算法有效降低了重连接的阻塞率,提高了系统的整体性能。  相似文献   

18.
利用NCEP的1,°×1,°格点资料,计算北京和天津地区平均垂直螺旋度;配合常规观测资料及多普勒雷达资料,对2012年7月21—22日京津特大暴雨进行诊断分析,结果表明:在高空槽与低空气旋性涡旋配合的形势下,平均垂直螺旋度对特大暴雨的发生发展有很好的诊断作用。  相似文献   

19.
Data on plasma sheet crossing measured by Cluster/HIA and Cluster/FGM during the period from July to October in 2001 -2003 are analyzed. Based on previous work on the characteristic features of continuous lobe reconnection (CLR) described in reference, two case studies and a statistical analysis were carried out on correlation between CLR in the mid magnetotail and substorm expansion onset for the events occurring during this period. It is found that almost all CLR events are in close connection with substorms. The beginning of CLR is almost always a few minutes ahead of substorm activities seen in the near Earth magnetotail and on the ground-based stations. This provides a clear indication that CLR is the virtual cause of substorm expansion onset during the period of continuous southward interplanetary magnetic field.  相似文献   

20.
As well known, the magnetic cross-tail component By in the magnetotail is in direct proportion to the in-terplanetary magnetic field (IMF) By component. And the polarity of IMF and plasmoid / flux rope By components do indeed agree. This results indicate that the IMF By penetrates plasmoids and the magnetic structures must therefore be three-dimensional. In this note, the dynamical processes of magnetotail in the course of a substorm are studied using a MHD code with two-dimensions and three components on the basis of two types of initial equilibrium solutions of the quiet magnetotail. The numerical results of two cases illustrate various features of time evolution of By component that correspond to two kinds of plasmoid-like structures: one is associated with a flux rope core and the other resembles a “closed loop” plamoid. Therefore, the occurrence of various magnetic structures in the magnetotail might be related to nonsteady driven reconnection with different distributions of the By component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号