共查询到20条相似文献,搜索用时 15 毫秒
1.
超级电容器用活性炭电极的制备及电化学性能研究 总被引:2,自引:0,他引:2
以石油焦为原料,采用KOH活化法制备比表面积为2 170 m^2/g的高比表面积活性炭,采用该材料作为电极材料,组装成超级电容器,并对它进行了恒电流充放电实验、循环伏安实验和交流阻抗等实验,结果表明,制备的活性炭作电极材料组装的电容器具有良好的电化学性能. 相似文献
2.
3.
有机体系下,采用循环伏安法(CV)在活性炭电极表面电聚合聚苯胺制备聚苯胺/活性炭复合电极,通过循环伏安、恒流充放电和电化学交流阻抗谱(EIS)测试了电极的电化学特性,结果表明,聚苯胺/活性炭复合电极具有良好的电容行为,在-1.0~1.5V参比极为Ag/AgCl,测试区间内具有较大的电化学容量,电极比电容高达276F·g-1,较活性炭电极的比电容92F·g-1有了很大提高.并且交流阻抗法测得活性炭电极的电荷转移电阻Rct为4.9Ω,而复合电极Rct仅2.4Ω.1000次充放电测试后,复合电极比电容仅衰减15.7%.由此表明,在有机体系下聚苯胺/活性炭复合电极是一种具有良好循环寿命和高比电容的复合电极材料. 相似文献
4.
掺锂聚苯胺/活性炭超级电容器电极材料的制备及电性能 总被引:1,自引:0,他引:1
采用苯胺在改性活性炭表面原位聚合的方法,合成了掺锂的超级电容器用聚苯胺/活性炭复合电极材料.用扫描电镜(SEM)研究了掺杂前后该复合材料的形态.在6mol/LKOH溶液中,以Hg/HgO电极为参比电极对电极材料进行循环伏安、恒流充放电、交流阻抗等电化学性能的测试,考察了掺杂锂盐后作为超级电容器的电极材料的电极性能.结果表明,掺杂锂盐后的复合电极材料的比容量有很明显的提高,由未掺杂锂时的372F/g提高到466F/g。多次循环充放电后电容量的保留率也得到显著的提高。 相似文献
5.
柔性全固态超级电容器作为便携式、可穿戴电子的储备电源备受青睐。利用印刷电子大面积、柔性化的独特优势可大大简化柔性电极的制作工艺,以活性炭为活性材料配制油墨,并结合导电银浆,采用丝网印刷方式套印制作了柔性超级电容器电极,并将PVA-H2SO4凝胶作为电解质涂覆在活性电极上组装成柔性共面超级电容器,测试其电化学性能。结果表明,丝印柔性超级电容器电极可成功应用于柔性共面超级电容器。当采用PVA-H2SO4凝胶作为电解质时工作电压可达0.8 V。当充放电电流为0.2 mA时,柔性共面超级电容器的面积比电容达到18 mF·cm-2。 相似文献
6.
为研制低成本、高比容超级电容器的关键复合电极材料,采用涂覆热分解法,以RuCl3·2H2O为前躯体,制备二氧化钌/活性炭复合电极材料.借助扫描电镜、附着力测试、循环伏安、恒流充放电和电化学阻抗谱等检测手段,观察复合薄膜电极材料的表面形貌,分析不同涂覆量的二氧化钌/活性炭复合薄膜电极的性能.研究结果表明:二氧化钌/活性炭复合电极材料具有良好的电化学稳定性,涂覆热分解最佳涂覆数为4次,复合薄膜的比表面积为321.4 m2/g,附着力为11.4 MPa;在H2s04溶液浓度为0.5 mol/L、扫描速率20 mV/s条件下,复合电极材料的比电容为422 F/g,内阻为0.33 Ω;经300次充放电后,电容量持续为98.8%. 相似文献
7.
活化剂种类对活性炭结构及性能的影响 总被引:1,自引:0,他引:1
以石油焦为前驱体,分别以KOH,NaOH,K2CO3和Na2CO3为活化剂通过化学活化制备活性炭,采用振实密度仪和全自动N2吸附仪研究活性剂对活性炭结构的影响,并以制备的活性炭为电极材料,l mol/LEt4NBF4/PC为电解液组装模拟电容器,采用LAND快速采样电池测试仪和电化学工作站考察不同活化剂对活性炭电化学性能的影响.研究结果表明:KOH具有最强的活化能力,其活化制备的活性炭具有较高的微孔含量和发达的孔隙结构,比表面积达2 362m2/g,孔容达到1.263 cm3/g,以其作电极材料,表现出良好的电容行为,质量比容量最高达到128.0 F/g,随着活化剂碱性的降低,活化能力大幅度降低,制备的活性炭比表面积和孔容急剧减小,K2CO3和Na2CO3不适合用作活化石油焦制备活性炭的活化剂. 相似文献
8.
以碳化后的中间相沥青为原料,分别采用化学活化和物理-化学联合活化工艺制备了超级电容器用活性炭电极材料,对不同活化方式制备的活性炭电极材料的微晶结构、孔径分布、比电容量、循环伏安和交流阻抗特性进行了比较.实验结果表明:采用物理-化学联合活化工艺制备的活性炭电极材料具有更理想的微晶结构和中孔含量.活性炭电极材料的结构与孔隙分布对电性能有明显影响,采用联合活化方式制备的电极材料具有较高的面积比容量、较好的功率特性及较理想的电容特性. 相似文献
9.
10.
11.
12.
以稻草秸秆为原料,在N_2气氛下,采用预碳化-碱活化的方法制备了活性炭材料,通过X射线衍射(XRD)、扫描电子显微镜(SEM)、N_2吸附-脱附等手段进行表征.结果表明,当活化温度为700℃时,制备的活性炭比表面积为2 743 m~2/g.将其用于超级电容器的电极材料显示了较好的性能,当电流密度为5 A/g时,比电容可达到380 F/g,循环充放电1 000次后,比电容值约为首次比电容的85%,具有较好的循环稳定性. 相似文献
13.
《四川理工学院学报(自然科学版)》2021,34(2)
将废旧轮胎热裂解得到炭黑,采用氢氧化钾(KOH)为活化剂,通过高温活化、浓硝酸(HNO_3)酸化处理成多孔活性炭,制备超级电容器电极材料。利用扫描电子显微镜(SEM)、X射线衍射仪(XRD)和氮气吸脱附对材料的微观形貌、晶体结构以及比表面积、孔径分布进行分析,并通过电化学工作站CHI660E对热裂解炭黑电极材料的电化学性能进行测试。结果表明:利用KOH活化以及浓HNO3酸化所制备的电极材料具有较好的电化学性能,其在0.5 A/g的电流密度下的放电比容量达到160 F/g,在20 A/g的电流密度仍然有127 F/g的放电比容量,容量保持率为79%,表现出较好的倍率性能。 相似文献
14.
采用不同种类表面活性剂对活性炭进行真空浸渍活化.通过红外光谱、热失重分析和电化学性能评价对处理前后的活性炭进行研究.结果表明,表面活性剂处理活性炭,可明显提高活性炭的有机电解液可润湿性,增加其比表面积利用率,改善活性炭电极的黏结性能.十二烷基苯磺酸钠处理后的活性炭电极,比电容由143.2F·g-1提高到196.8F·g-1,内阻由1.75Q降低到0.71Ω,最大功率密度由6035.7W·kg-1增加到9380.2W·kg-1. 相似文献
15.
表面含氧官能团对活性炭电化学性能的影响 总被引:1,自引:0,他引:1
采用浓硝酸对椰壳活性炭和各壳活性炭进行液相氧化改性后,制成了以KOH为电解液的超级电容器的炭电极,研究表面含氧官能团在碱性电解液中对电容器电极的电化学性能的影响.运用低温N2吸附、XPS和FTIR表征活性炭孔结构和表面性质.研究结果表明,氧化后活性炭的比表面积和孔容降低,表面含氧量增大.且经硝酸氧化后炭表面的含氧官能团含量发生了变化,即在内酯基的含量减少的同时,羟基、羰基和菝基的含量增加,其中羟基含量的增幅最大.在50mA/g电流密度下经过100次充放电循环,氧化后的椰壳活性炭和杏壳活性炭质量比电容分别达到193 F/g和150F/g,均比氧化前提高了30%以上.由XPS的分析结果判断,羟基对电极比电容提高的贡献最大.同时,在大电流充放电时,氧化后炭电极的比电容的衰减率明显低于氧化前. 相似文献
16.
钴离子对聚苯胺/活性炭复合材料制备与性能的影响 总被引:1,自引:0,他引:1
采用苯胺在活性炭表面原位化学聚合的方法合成了聚苯胺/活性炭(PANI/AC)复合材料。在合成过程中添加钴盐,并研究了钴离子对复合材料结构和电容特性的影响。利用场发射扫描电镜、傅立叶红外光谱仪对其表面微观形态和化学结构进行了对比分析;在6mol/L KOH电解液中,以Hg/HgO为参比电极对复合材料进行了循环伏安、恒流充放电及交流阻抗等电化学性能的测试。结果表明,添加钴盐改性时聚苯胺在活性炭表面包覆的更均匀,循环伏安结果表明添加钴盐改性时复合材料的电化学活性提高,恒流充放电测试结果显示其电容量从不添加钴盐改性时的387F/g提高到了530F/g,提高了将近38.2%,并且显示出良好的大电流充放特性。 相似文献
17.
以废弃杨木、柏木及核桃壳3种生物质为碳源,以磷酸为水热助剂和活化剂,经过水热碳化、活化后得到超级电容器用活性炭.用热分析系统对不同碳源的热分解过程进行了分析,用傅里叶红外光谱和X射线衍射仪分析了样品晶型与表面官能团,用恒流充放电和循环伏安法评价了样品的电化学性能以及影响电化学性能的关键因素.结果表明,在有机电解液中,当电流密度为0.1 A/g时,杨木活性炭样品的比容量高达97 F/g,当功率密度为757 W/kg时,其能量密度可达237 Wh/kg.本实验可对废弃生物质的高值循环利用提供参考. 相似文献
18.
(NiO+CoO)/活性炭超级电容器电极材料的制备及其性能 总被引:2,自引:0,他引:2
以表面包覆7%Co(OH)2的球形Ni(OH)2为原料,在450℃热分解得到(NiO CoO)粉末,将其与活性炭(AC)按不同质量比混合均匀,得到超级电容器用(NiO CoO)/AC 复合电极材料.采用扫描电镜(SEM)、X 射线衍射(XRD)、热重分析(TG)等方法对样品进行物理性能测试,用循环伏安(CV)法研究不同配比的(NiO CoO)/AC复合电极在6mol/L KOH 电解液中的电化学性能,并对复合电极材料模拟电容器与活性炭模拟电容器进行恒流充放电测试.研究结果表明在6 mol/L KOH电解液中,当复合材料中的(NiO CoO)质量分数为6%时,所制备的单电极比电容量最大,为240 F/g,比纯活性炭电极的比电容(约160 F/g)提高50%;复合电极模拟电容器具有较好的可逆性和电化学性能. 相似文献
19.
通过正交实验法研究了影响脉冲电流法合成MnO2超级电容器电极材料性能的影响因素,发现影响效果由大到小依次为:脉冲电流关断时间,醋酸锰水溶液浓度,脉冲电流密度,脉冲电流导通时间.在正交实验法得出的最优条件下,即醋酸锰浓度为0.5 mol/L,电流密度为250 A/m2,导通时间为0.01 s,关断时间为0.2 s,所制备的MnO2薄膜电极材料表面具有丰富的纳米球结构,在10 mV/s的扫描速率下,3 mol/L的KCl溶液作为电解液,比容量可以达到575 F/g,并且在2 000mV/s的快速充放电条件下,仍然能够保持良好的电容特性. 相似文献
20.
以淀粉为原料,分别采用H3PO4活化法和物理-化学复合活化法制备活性炭,并将制备的活性炭组装成超级电容器。研究了制备工艺对活性炭孔结构及电容特性的影响;通过氮气吸附和SEM方法表征了淀粉基活性炭的孔结构和表面形貌,通过循环伏安曲线、恒流充放电、交流阻抗实验考察了其电化学性能。结果表明,比表面积与比电容并没有线性关系;物理-化学复合活化法在温度为850 ℃、活化时间为2h条件下,制备的淀粉基活性炭比表面积为1438 m2/g,比电容为150 F/g。 相似文献