首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文对高阶非线性微分方程组x=f_1(x,y,x,y,x,y)…y=f_2(x,y,x,y,x,y)的某些特殊类型,研究了平凡解的全局渐近稳定性[1],用类比法[2]构造李雅普诺夫函数,得到了全局渐近稳定性的一些充分条件。主要结果为定理2、定理3和定理4。文中具体研究了如下三种类型的方程:和x a_1x a_2y a_3x a_4y f(x)=0…y b_1x b_2y b_3x b_4y g(y)=0x a_1x a_2y f(x) a_4y a_3x=0…y b_1x b_2y b_3x g(y) b_6y=0x f(x) a_2y a_3x a_4y a_5x=0…y b_1x g(y) b_3x b_4y b_6y=0其中ai,bi(i=1.2.…,6)均为常数,f和g具有保证解对初值唯一性的条件。  相似文献   

2.
主要运用pell方程、递推序列、同余式及(非)平方剩余等一些初等方法,证明了不定方程x(x+1)(x+2)(x+3)=21y(y+1)(y+2)(y+3)和x(x+1)(x+2)(x+3)=23y(y+1)(y+2)(y+3)无正整数解.  相似文献   

3.
设 X和 Y是实向量空间,映射 f:X2→Y称为二元三次函数,x1,x2,y1,y2∈X,都满足下面的二元三次函数方程:f(2x1+x2,2y1+y2)+f(2x1+x2,2y1-y2)+f(2x1-x2,2y1+y2)+f(2x1-x2,2y1-y2)=4f(x1+x2,y1+y2)+4f(x1-x2,y1+y2)+24f(x1,y1+y2)+4f(x1+x2,y1-y2)+4f(x1-x2,y1-y2)+24f(x1,y1-y2)+24f(x1+x2,y1)+24f(x1-x2,y1)+144f(x1,y1)。研究二元三次函数方程解的一般形式,证明了在模糊 Banach 空间上该方程的 Hyers-Ulam 稳定性。  相似文献   

4.
在本文内,我们得到了关于[x]的几个不等式(1)[x]+[y]+2[x+y]≤[3x]+[3y](2)[x]+[y]+[2x+y]+[x+2y]≤[4x]+[4y](3)[x]+[y]+[3x+y]+[x+3y]≤[5x]+[5y]这里[x]代表不超过x的最大整数.  相似文献   

5.
对于显函数y=f(x),若y的导数存在,则y的各阶导数:y'、y″、……y~(n),与原求导函数y一样,都各是关于同一变量x的函数:y′=f′(x)=f_1(x)、y″=f″(x)=f_2(x)、……y~(n)=f~(n)(x)=f_(n)(x)。相应地,若y通过中间变量u=(?)(x)是x  相似文献   

6.
主要运用pell方程、递推序列、同余式及(非)平方剩余等一些初等方法,证明了不定方程x(x+1)(x+2)(x+3)=21y(y+1)(y+2)(y+3)和x(x+1)(x+2)(x+3)=23y(y+1)(y+2)(y+3)无正整数解.  相似文献   

7.
给出混合Cauchy-四次函数方程f(x1+x2,2y1+y2)+f(x1+x2,2y1-y2)=4f(x1,y1+y2)+4f(x1,y1-y2)+24f(x1,y1)-6f(x1,y2)+4f(x2,y1+y2)+4f(x2,y1-y2)+24f(x2,y1)-6f(x2,y2)的定义,并得到其一般解,同时,在Banach空间及Non-Archimedean赋范空间上讨论了它的Ulam稳定性。
  相似文献   

8.
设X和Y分别是实向量空间和实Banach空间,映射f:X2→Y称为二元混合五次函数是指任给x1, x2, y1, y2∈X都满足方程f(x1+x2,2y1+y2)+f(x1+x2,2y1-y2)+f(x1-x2,2y1+y2)+f(x1-x2,2y1-y2)=4f(x1, y1+y2)+4f(x2,y1+y2)+4f(x1,y1-y2)+4f(x2,y1-y2)+24f(x1,y1)+24f(x2,y1)。给出了二元混合五次方程的一般解,并证明了它的Hyers-Ulam-Rassias稳定性。  相似文献   

9.
论述直线方程Ax0x+(B)/(2)(y0x+x0y)+Cy0y+(D)/(2)(x+x0)+(E)/(2)(y0+y)+F=0与二次曲线Ax2+Bxy+Cy2+Dx+Ey+F=0的关系,讨论了直线方程Ax0x+(B)/(2)(y0x+x0y)+Cy0y+(D)/(2)(x+x0)+(E)/(2)(y0+y)+F=0的几何意义.  相似文献   

10.
论述直线方程Ax0x B/2(y0x x0y) Cy0y D/2(x x0) E/2(y0 y) F=0与二次曲线Ax^2 Bxy Cy^2 Dx Ey F=0的关系,讨论了直线方程Ax0x B/2(y0x x0y) Cy0y D/2(x x0) E/2(y0 y) F=0的几何意义。  相似文献   

11.
本文中,E表示一个维数高于1的实的赋范线空间。定义1 设x、y∈(E-{θ}),且x'=x/‖x‖,y'=y/‖y‖,当x'≠y'时,称Sup为x与y之夹角的弧度;当x'=y'时,规定x与y之夹角的弧度为θ,以下用R(x,y)表示x与y之夹角的弧度。定义2 设x,y∈E,当R(x,y)=R(-x,y)时称x弧正交于y;为方便起见,规定θ弧正交于任何向量并且任何向量弧正交于θ,以下用x⊥cy表示x弧正交于y。  相似文献   

12.
徐炳元 《科技信息》2008,(20):164-164
文章讨论了微分方程y′(x)u(y)=q(x)v(y)解的特殊求法,得出:当{u(y)/v(y)}′=y′/v(y)时y′+p(x)u(y)=q(x)v(y)有通解u(y)/v(y)=e^-∫p(x)dx[∫q(x)e^∫p(x)dx dx+c]。  相似文献   

13.
基于Wang等人引入的Gorenstein (x,y)-平坦模的概念,利用环模理论和同调代数的方法,研究了Gorenstein (x,y)-平坦模类GF(x,y)的稳定性,讨论了任意左R-模M的GF(x,y)-投射维数GF(x,y)-pd(M)的若干性质,其中(x,y)是R-模范畴的一个完备对偶对。证明了x是模类GF(x,y)的生成子和余生成子,且在左R-模短正合列(ε):0→U→V→W→0中各项的GF(x,y)-投射维数之间存在着密切的联系。结果表明:当(x,y)是一个完备对偶对,GF(x,y)是投射可解的,且ToriR≥1(y,x)=0时,如果V是Gorenstein (x,y)-平坦模,那么GF(x,y)-pd(W)≤GF(x,y)-pd(U)+1;如果U是Gorenstein (x,y)-平坦模,那么GF(x,y)-pd(V)≤GF(x,y)-pd(W);如果W是Gorenstein (x,y)-平坦模且(ε)在函子HomR(x,-)下正合,那么等式GF(x,y)-pd(U)=GF(x,y)-pd(V)成立。  相似文献   

14.
刘喜玲  霍振宏  陈留强 《长春大学学报》2013,(12):1588-1589,1598
给出了环面上连续自映射f的ω-极限集的如下结果:若 (x,y)∈X,则(1)ωf(x,y)=ωfn(x,y);(2)(x,y)AP(f)蕴涵ωf(x,y)不可数;(3)ωf(x,y)或是由厂的一条周期轨道组成,或不可数;(4)ωf(x,y)=n-1∪i=0ωfn(f(x,y))f(ωfnf(x,y)))=ωfn(fi+1(x,y)),f(ωfn(fn-1(x,y)))=ωfn(x,y)。  相似文献   

15.
考虑了形如x=-y x(a f1(x,y) fn(x,y)),y=x y(a f1(x,y) fn(x,y))的Poincaré系统,这里fn(x,y)是n次齐次多项式,得到了当n=4,5,…,8时系统的中心条件及细焦点的阶数和极限环个数。  相似文献   

16.
运用递推序列的方法,证明了不定方程x(x+1)(x+2)(x+3)=34y(y+1)(y+2)(y+3)仅有正整数解(x,y)=(14,5).  相似文献   

17.
本文在赋范线性空间中考察下列几类泛函方程 f(x)g(y)=h(x+y)(Ⅰ) f(x+y)=f(x)f(y)(Ⅱ) f(x+y)=f(x)+f(y)+ag(x)g(y)(Ⅲ)的性质与解以及彼此之间的关系。  相似文献   

18.
本文研究了动力系统x=x+P_n(x,y),y=y+Q_n(x,y),这里P_n(x,y),Q_n(x,y)为n次二元多项式齐式,证明了这个系统为可积系统,并且研究了这个奇点的性质。  相似文献   

19.
通过运用Pell方程、递归序列、同余式、平方剩余和雅克比符号等初等数论的方法,证明了:不定方程x3+8=19y2仅有整数解(x,y)=(-2,0),(62,±112);不定方程x3-8=19y2仅有整数解(x,y)=(2,0),(3,±1),(14,±12).证明过程中,纠正了不定方程x3-1=38y2的整数解只有(x,y)=(1,0)的结论,给出不定方程x3-1=38y2的全部整数解仅有(x,y)=(1,0),(7,±3).  相似文献   

20.
对于方程 M( x,y) dx+N( x,y) dy=0为恰当方程的充要条件 :       M y= N x由曲线积分中的格林 ( Green)公式知 ,对于积分∫Mdx+Ndy当 M y= N x时 ,积分与路径无关 ,只与起点 A( x0 ,y0 ) ,终点 B( x,y)有关 :u( x,y) =∫( x,y)( x0 ,y0 ) Mdx+Ndy=∫xx0 M( x,y0 ) dx+∫yy0 N( x,y) dy  方程的通解为 :u( x,y) =C( C为任意常数 )例 1 :求解方程 ( 5x4 +3 xy2 -y3) dx+( 3 x2 y-3 xy2 +y3) dy=0解 : M y=6xy-3 y2 = N x 方程为恰当方程   u( x,y) =∫( x,y)( 0 ,0 ) ( 5x4 +3 xy2 -y3) dx+( 3 x2 y-3 xy2 +y3) dy=∫x0…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号