首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
We perform Bayesian model averaging across different regressions selected from a set of predictors that includes lags of realized volatility, financial and macroeconomic variables. In our model average, we entertain different channels of instability by either incorporating breaks in the regression coefficients of each individual model within our model average, breaks in the conditional error variance, or both. Changes in these parameters are driven by mixture distributions for state innovations (MIA) of linear Gaussian state‐space models. This framework allows us to compare models that assume small and frequent as well as models that assume large but rare changes in the conditional mean and variance parameters. Results using S&P 500 monthly and quarterly realized volatility data from 1960 to 2014 suggest that Bayesian model averaging in combination with breaks in the regression coefficients and the error variance through MIA dynamics generates statistically significantly more accurate forecasts than the benchmark autoregressive model. However, compared to a MIA autoregression with breaks in the regression coefficients and the error variance, we fail to provide any drastic improvements.  相似文献   

2.
    
The existing contradictory findings on the contribution of trading volume to volatility forecasting prompt us to seek new solutions to test the sequential information arrival hypothesis (SIAH). Departing from other empirical analyses that mainly focus on sophisticated testing methods, this research offers new insights into the volume-volatility nexus by decomposing and reconstructing the trading activity into short-run components that typically represent irregular information flow and long-run components that denote extreme information flow in the stock market. We are the first to attempt at incorporating an improved empirical mode decomposition (EMD) method to investigate the volatility forecasting ability of trading volume along with the Heterogeneous Autoregressive (HAR) model. Previous trading volume is used to obtain the decompositions to forecast the future volatility to ensure an ex ante forecast, and both the decomposition and forecasting processes are carried out by the rolling window scheme. Rather than trading volume by itself, the results show that the reconstructed components are also able to significantly improve out-of-sample realized volatility (RV) forecasts. This finding is robust both in one-step ahead and multiple-step ahead forecasting horizons under different estimation windows. We thus fill the gap in studies by (1) extending the literature on the volume-volatility linkage to EMD-HAR analysis and (2) providing a clear view on how trading volume helps improve RV forecasting accuracy.  相似文献   

3.
    
This paper introduces a novel generalized autoregressive conditional heteroskedasticity–mixed data sampling–extreme shocks (GARCH-MIDAS-ES) model for stock volatility to examine whether the importance of extreme shocks changes in different time ranges. Based on different combinations of the short- and long-term effects caused by extreme events, we extend the standard GARCH-MIDAS model to characterize the different responses of the stock market for short- and long-term horizons, separately or in combination. The unique timespan of nearly 100 years of the Dow Jones Industrial Average (DJIA) daily returns allows us to understand the stock market volatility under extreme shocks from a historical perspective. The in-sample empirical results clearly show that the DJIA stock volatility is best fitted to the GARCH-MIDAS-SLES model by including the short- and long-term impacts of extreme shocks for all forecasting horizons. The out-of-sample results and robustness tests emphasize the significance of decomposing the effect of extreme shocks into short- and long-term effects to improve the accuracy of the DJIA volatility forecasts.  相似文献   

4.
5.
    
From the cross-market perspective, this paper investigates crude oil volatility index (OVX) forecasts by proposing a hybrid method, which combines the data-driven SVR technique and parametric models. In terms of parametric models, we utilize GARCH-type models with jumps, and the forecasting effects of five non-parametric jumps (including interday and intraday jump tests) of stock market are also explored. Empirical results show that our approach can substantially increase forecasting accuracy. In addition, the model confidence set test and robust test reaffirm the superiority of the novel hybrid method. From the assessment of economic significance, the advantages of the hybrid method for volatility index forecasting are further confirmed. All these findings imply that jumps of stock market can be helpful in forecasting OVX, especially after the introduction of the hybrid method. Our work can certainly provide a new insight for volatility forecasting and cross-market research.  相似文献   

6.
    
This study is the first to examine the impacts of overnight and intraday oil futures cross-market information on predicting the US stock market volatility the high-frequency data. In-sample estimations present that high overnight oil futures RV can lead to high RV of the S&P 500. Moreover, negative overnight returns are more powerful than positive components, implying the existence of the leverage effect. From statistical and economic perspectives, out-of-sample results indicate that the decompositions of overnight oil futures and intraday RVs, based on signed intraday returns, can significantly increase the models' predictive ability. Finally, when considering the US stock market overnight effect, the decompositions are still useful to predict volatility, especially during high US stock market fluctuations and high and low EPU states.  相似文献   

7.
    
Inspired by the commonly held view that international stock market volatility is equivalent to cross-market information flow, we propose various ways of constructing two types of information flow, based on realized volatility (RV) and implied volatility (IV), in multiple international markets. We focus on the RVs derived from the intraday prices of eight international stock markets and use a heterogeneous autoregressive framework to forecast the future volatility of each market for 1 day to 22 days ahead. Our Diebold-Mariano tests provide strong evidence that information flow with IV enhances the accuracy of forecasting international RVs over all of the prediction horizons. The results of a model confidence set test show that a market's own IV and the first principal component of the international IVs exhibit the strongest predictive ability. In addition, the use of information flows with IV can further increase economic returns. Our results are supported by the findings of a wide range of robustness checks.  相似文献   

8.
This paper explores a number of statistical models for predicting the daily stock return volatility of an aggregate of all stocks traded on the NYSE. An application of linear and non-linear Granger causality tests highlights evidence of bidirectional causality, although the relationship is stronger from volatility to volume than the other way around. The out-of-sample forecasting performance of various linear, GARCH, EGARCH, GJR and neural network models of volatility are evaluated and compared. The models are also augmented by the addition of a measure of lagged volume to form more general ex-ante forecasting models. The results indicate that augmenting models of volatility with measures of lagged volume leads only to very modest improvements, if any, in forecasting performance. © 1998 John Wiley & Sons, Ltd.  相似文献   

9.
Effectively explaining and accurately forecasting industrial stock volatility can provide crucial references to develop investment strategies, prevent market risk and maintain the smooth running of national economy. This paper aims to discuss the roles of industry‐level indicators in industrial stock volatility. Selecting Chinese manufacturing purchasing managers index (PMI) and its five component PMI as the proxies of industry‐level indicators, we analyze the contributions of PMI on industrial stock volatility and further compare the volatility forecasting performances of PMI, macroeconomic fundamentals and economic policy uncertainty (EPU), by constructing the individual and combination GARCH‐MIDAS models. The empirical results manifest that, first, most of the PMI has significant negative effects on industrial stock volatility. Second, PMI which focuses on the industrial sector itself is more helpful to forecast industrial stock volatility compared with the commonly used macroeconomic fundamentals and economic policy uncertainty. Finally, the combination GARCH‐MIDAS approaches based on DMA technique demonstrate more excellent predictive abilities than the individual GARCH‐MIDAS models. Our major conclusions are robust through various robustness checks.  相似文献   

10.
    
I examine the information content of option‐implied covariance between jumps and diffusive risk in the cross‐sectional variation in future returns. This paper documents that the difference between realized volatility and implied covariance (RV‐ICov) can predict future returns. The results show a significant and negative association of expected return and realized volatility–implied covariance spread in both the portfolio level analysis and cross‐sectional regression study. A trading strategy of buying a portfolio with the lowest RV‐ICov quintile portfolio and selling with the highest one generates positive and significant returns. This RV‐Cov anomaly is robust to controlling for size, book‐to‐market value, liquidity and systematic risk proportion. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
    
The success of any timing strategy depends on the accuracy of market forecasts. In this paper, we test five indices to forecast the 1‐month‐ahead performance of the S&P 500 Index. These indices reflect investor sentiment, current business conditions, economic policy uncertainty, and market dislocation information. Each model is used in a logistic regression analysis to predict the 1‐month‐ahead market direction, and the forecasts are used to adjust the portfolio's beta. Beta optimization refers to a strategy designed to create a portfolio beta of 1.0 when the market is expected to go up, and a beta of ?1.0 when a bear market is expected. Successful application of this strategy generates returns that are consistent with a call option or an option straddle position; that is, positive returns are generated in both up and down markets. Analysis reveals that the models' forecasts have discriminatory power in identifying substantial market movements, particularly during the bursting of the tech bubble and the financial crisis. Four of the five forecast models tested outperform the benchmark index.  相似文献   

12.
    
This paper investigates the transmission patterns of stock market movements between developed and emerging market economies by estimating a four‐variable VAR model. The underlying economic fundamentals and trade links are considered as possible determinants of differences in transmission patterns. The results of the impulse response functions and variance decompositions indicate that significant links exist between the stock markets of the USA and Mexico and weaker links between the markets of the USA, Argentina, and Brazil. Differences in the patterns of stock market responses are consistent with differences in trade flows. The response of emerging markets to a shock to the US market lasts longer than that of a developed market such as the UK. While no single emerging market can affect the US stock market, the combined effect of emerging markets on the US stock market is found to be statistically significant. These findings can be linked to differences in the speed of information processing and to the institutional structure governing the market. Overall the findings suggest that the transmission of stock market movements is in accord with underlying economic fundamentals rather than irrational contagion effects. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

13.
    
Empirical high‐frequency data can be used to separate the continuous and the jump components of realized volatility. This may improve on the accuracy of out‐of‐sample realized volatility forecasts. A further improvement may be realized by disentangling the two components using a sampling frequency at which the market microstructure effect is negligible, and this is the objective of the paper. In particular, a significant improvement in the accuracy of volatility forecasts is obtained by deriving the jump information from time intervals at which the noise effect is weak. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
    
We analyze the predictive value of (the surprise component of) state-level business applications, as a proxy of local investor sentiment, for the state-level realized US stock-market volatility. We use high-frequency data for the period from September 2011 to October 2021 to compute realized volatility. Using an extended version of the popular heterogeneous autoregressive realized volatility model and accounting for the possibility that users of forecasts have an asymmetric loss function, we show that business applications tend to have predictive value for realized state-level stock-market volatility, as well as for upside (“good”) and downside (“bad”) realized volatility, for users of forecasts who suffer a larger loss from an underprediction of realized volatility than from an overprediction of the same (absolute) seize, after controlling for realized moments (realized skewness, realized kurtosis, realized jumps, and realized tail risks). We also highlight that the COVID-19 period is a major driver of our empirical results.  相似文献   

15.
    
This paper uses fractional integration to examine the long‐run dynamics and cyclical structure of US inflation, real risk‐free rate, real stock returns, equity premium and price/dividend ratio, annually from 1871 to 2000. It implements a procedure which allows consideration of unit roots with possibly fractional orders of integration both at zero (long‐run) and cyclical frequencies. When focusing exclusively on the former, the estimated order of integration varies considerably, and non‐stationarity is found only for the price/dividend ratio. When the cyclical component is also taken into account, the series appear to be stationary but to exhibit long memory with respect to both components in almost all cases. The exception is the price/dividend ratio, whose order of integration is higher than 0.5 but smaller than 1 for the long‐run frequency, and is between 0 and 0.5 for the cyclical component. Also, mean reversion occurs in all cases. Finally, six different criteria are applied to compare the forecasting performance of the fractional (at both zero and cyclical frequencies) models with others based on fractional and integer differentiation only at the zero frequency. The results, based on a 15‐year horizon, show that the former outperforms the others in a number of cases. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
本文以2004年至2009年间上证A股月流通市值和房地产月销售额作二元时间序列,进行协整分析,得出两者之间呈正向相关性,并且股市相较于房地产市场投资倾向约晚一个月。计算表明,近年来二者联动性十分强烈。在宏观调控时,应注意对金融风险的防范,从全局的角度思考政策对资本市场的影响。对个人投资者而言,应当重视房地产市场对股市的预警作用。  相似文献   

17.
    
This article examines the role of market momentum, investor sentiment, and economic fundamentals in forecasting bear stock market. We find strong evidence that bear stock market is predictable by market momentum and investor sentiment in full‐sample and out‐of‐sample analyses. Most economic fundamental variables lose their out‐of‐sample significance once we control for market momentum and investor sentiment. However, the inclusion of economic fundamentals can improve the economic value of the forecasting model in our trading experiments. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
    
We propose in this paper a threshold nonlinearity test for financial time series. Our approach adopts reversible‐jump Markov chain Monte Carlo methods to calculate the posterior probabilities of two competitive models, namely GARCH and threshold GARCH models. Posterior evidence favouring the threshold GARCH model indicates threshold nonlinearity or volatility asymmetry. Simulation experiments demonstrate that our method works very well in distinguishing GARCH and threshold GARCH models. Sensitivity analysis shows that our method is robust to misspecification in error distribution. In the application to 10 market indexes, clear evidence of threshold nonlinearity is discovered and thus supporting volatility asymmetry. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
    
It has been widely accepted that many financial and economic variables are non‐linear, and neural networks can model flexible linear or non‐linear relationships among variables. The present paper deals with an important issue: Can the many studies in the finance literature evidencing predictability of stock returns by means of linear regression be improved by a neural network? We show that the predictive accuracy can be improved by a neural network, and the results largely hold out‐of‐sample. Both the neural network and linear forecasts show significant market timing ability. While the switching portfolio based on the linear forecasts outperforms the buy‐and‐hold market portfolio under all three transaction cost scenarios, the switching portfolio based on the neural network forecasts beats the market only if there is no transaction cost. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

20.
    
This study attempts to apply the general equilibrium model of stock index futures with both stochastic market volatility and stochastic interest rates to the TAIFEX and the SGX Taiwan stock index futures data, and compares the predictive power of the cost of carry and the general equilibrium models. This study also represents the first attempt to investigate which of the five volatility estimators can enhance the forecasting performance of the general equilibrium model. Additionally, the impact of the up‐tick rule and other various explanatory factors on mispricing is also tested using a regression framework. Overall, the general equilibrium model outperforms the cost of carry model in forecasting prices of the TAIFEX and the SGX futures. This finding indicates that in the higher volatility of the Taiwan stock market incorporating stochastic market volatility into the pricing model helps in predicting the prices of these two futures. Furthermore, the comparison results of different volatility estimators support the conclusion that the power EWMA and the GARCH(1,1) estimators can enhance the forecasting performance of the general equilibrium model compared to the other estimators. Additionally, the relaxation of the up‐tick rule helps reduce the degree of mispricing. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号