首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
光子是极具潜力的信息载体。由电子在介质中的定态薛定谔方程和光在介质中变形麦克斯韦方程具有相同形式可知,在折射率周期性变化的材料中光子应呈现出类似电子在半导体中的能带结构。采用机械打孔法、胶体法、液晶法、“刻蚀”法等能够制备出满足一定光频段的光子晶体材料,这些材料都展现了广阔的技术开发前景。  相似文献   

2.
烃燃烧反应机理探讨   总被引:9,自引:3,他引:9  
由于光是一种有序的能量,因而光是一种非体积功(W′),根据公式△H=W′-0.1196n/λ计算了乙炔和丙烷燃烧反应的火焰温度,提出了烃燃烧反应机理,该机理为;第一步,氧气吸收光子形成游离态氧原子,每摩尔氧气吸收1摩尔光子;第二步,烃裂解形成碳和氢气,该步骤既不吸收光子,也不发出光子;第三步,氢气与游离态氧原子作用生成水,每生成1mol水发出1mol光子;第四步,碳与游离态氧原子作用生成CO,每生成1molCO发出1mol光子;第五步,CO与氧分子作用生成CO2,该步骤既不吸收光子,也不发出光子。  相似文献   

3.
提出一种新型函数光子晶体, 其折射率为空间位置函数.  先由费马原理给出光在一维函数光子晶体中的运动方程,  推导后得到传输矩阵, 再给出一维函数光子晶体的色散关系、 带隙结构和透射率, 并通过选择不同折射率分布函数n(z)得到比常规光子晶体更宽或更窄的能隙结构.  相似文献   

4.
生物光子与藏药七十味珍珠丸的药理机制   总被引:1,自引:0,他引:1  
采用高度敏感的生物光子检测(成像)系统(主要由电子倍增CCD和体视显微镜组成),研究了藏药七十味珍珠丸(RNSP)灌胃处理对健康成年雌性昆明小鼠脑片、肝和肾组织的生物光子活动调控的影响.实验结果表明:脑片、肝和肾均具有自发光现象(生物光子).在光刺激下,脑片、肝和肾具有不同程度的诱发光现象.RNSP处理后的脑组织诱发光的最大值高于对照组,并且衰减较慢.研究结果提示RNSP可能通过影响效应组织如脑组织的生物光子的活动来发挥其药理作用.其作用机制可能是通过影响生物光子信号传递对组织细胞功能产生调节作用,确切的作用机制值得进一步研究.  相似文献   

5.
燃烧反应火焰温度的探讨   总被引:6,自引:2,他引:4  
由于光是一种有序的能量,因而作者认为燃烧反应发出的光子的能量也是体系对环境作的一种非体积功W′.根据热力学第一定律推导出,燃烧反应的反应焓△H与光子能量E之间的关系是△H=-nEm=-0.119 6n/λ.根据公式计算得的H2、CO和C2H2燃烧的火焰温度分别为2894 K、1 625 K和3 804 K,这与它们各自的实际温度2 773~3 273 K、1 673 K和3 773 K非常接近.另外,作者还说明了如何根据反应机理确定有机物燃烧时发出的光子的量.  相似文献   

6.
舒学军 《江西科学》2021,39(1):16-21
提出了低于光速的正物质(三维空间物质)具有正引力场能,外在表现为放热(或有热辐射),有正引力场(有向心力、正引力).等于光速的0(零)物质有0(零)引力场,也论证了超光速的虚物质(四维空间物质、暗物质)具有负引力场能,外在表现为吸热,具有反引力场(排斥力),超光速的虚物质(四维空间物质、暗物质)因为具有负引力场能,结果导致了宇称不对称现象.论证了电子和正电子的物质湮灭转化为超光速的虚物质(虚光子),并推导出了虚光子γ的质量为5.006×10-41 g.也推导出了超光速虚光子γ的薛定谔方程,并且论证了高能量场虚光子γ的能量E2是有8个能量相位(太极八卦相位)的.  相似文献   

7.
我们提出一种函数型光子晶体,其折射率是一个随空间位置周期性变化的函数.基于费马原理,我们得到了光在一维函数型光子晶体中的运动方程,并利用传输矩阵的方法推导出光在一维函数光子晶体的色散关系、发射率和透射率.通过理论模拟发现,介质的折射率、半周期厚度以及入射角对光子晶体带隙变化有重要的影响.  相似文献   

8.
采用量子化辐射场与相对论电子作用的模型,从微扰论得出的跃迁概率表达式出发,导出了n光子集团与电子发生Compton散射的跃迁概率表达式.进而研究了 n光子集团Compton散射的光子散射截面性质,得出了双光子Compton散射的光子散射截面的具体表达式,结果表明n光子Gompton散射的光子微分散射截面不仅与散射角(光子入射方向与散射方向的夹角)有关,还与入射光场的光子数密度以及初始电子的能量有关.  相似文献   

9.
有机发光二极管(OLED)中产生的光在进入空气的过程中,会因材料折射率的不匹配而产生全内反射现象,极大地限制了器件的出光效率,最终只有20%的光能够进入空气中。采用有限时域差分(FDTD)的理论计算方法,在OLED器件中嵌入由高折射率与低折射率材料组成的光子晶体结构,研究了不同光子晶体周期、深度以及折射率参数对器件出光效率的影响。结果表明:在可见光范围内(400~700 nm),光子晶体的深度为0.45μm、周期为1.4μm、占空比为50%以及介质1与介质2折射率为2.2∶1.0时,光子晶体OLED器件的平均出光效率提高到40.7%,平均增强系数为122%。  相似文献   

10.
计算了电子加速器中不同能量的电子垂直入射到钨靶和金靶上时的光中子产额。采用 Monte Carlo 程序EGS4对电子光子簇在靶中的输运进行模拟 ,计算出光子在靶中的径迹长度 ,从而求出光中子产额。对电子加速器钨靶和金靶中的光中子产额进行了计算 ,得到了电子加速器中光中子产额随打靶电子能量变化的规律及随靶厚度变化的规律 ,为加速器靶和屏蔽系统的设计提供依据 ,并为计算光中子的剂量分布和复合靶中的光中子产额奠定基础  相似文献   

11.
基于腔量子动力学(QED)系统,从N个原子和M个原子的W态中各取1个原子同时送入真空腔场,利用原子与腔场相互作用实现2个W态融合.当原子与腔场发生共振作用后,探测腔场.结果表明:若有1个光子,则初始的2个W态以一定概率融合为(N+M)个原子W态;若腔场中没有光子,则探测飞出2个原子,若2个原子中有1个原子处于激发态,则初始的2个W态以一定概率融合为(N+M-2)个原子W态;若2个原子均处于基态,则余下的(N-1)个原子W态和(M-1)个原子W态仍可按此方案循环融合.  相似文献   

12.
光子晶体光纤在无源光器件及光电子学领域有着广泛的应用。从Helmholtz方程出发推导出电场在光子晶体光纤中传播的本征方程,用简明方法讨论了光子晶体光纤数值研究中的标量模型和全矢量模型,并进一步对光子晶体光纤的模式特征、数值孔径及双折射性质进行分析。  相似文献   

13.
给出外场中粒子的Lagrange函数及其Hamilton量的相对论表达式. 令静止质量m0=0, 进一步给出光子的Hamilton量及光子在介质中的势能. 在此基础上, 给出自由和非自由光子的量子波动方程. 用该方程可研究光在光子晶体中的量子色散关系及量子透射等特性.  相似文献   

14.
PENELOPE软件包的移植与应用实例   总被引:7,自引:3,他引:4  
PENEL OPE是电子 -光子簇射的 Monte- Carlo模拟计算软件包 (F.Salvat,1996 ) ,能量范围为 1ke V至几百 Me V;模拟计算方法为混合模拟 ,即硬事件的详细模拟与软事件的压缩模拟相结合 ;有构造简单的几何软件包 ,能模拟光子 -电子在由二次曲面构成的复杂几何体中的输运过程 .本文作者在 133微机上实现了对 PENEL OPE的移植 ,并给出了两个应用实例  相似文献   

15.
光子是什么     
通常认为光子是电磁场量子,亦即电磁场经量子场处理后形成的方程可以描写光子。然而在物理思维上存在困难,例如很难了解光子物理形象的动力学。非相对论量子力学(例如Schr?dinger方程)决定,用波函数Ψ(x)描述的电子定位是在空间中的几率性分布;但与此相反,光子是不可定位的。由于在数学上不能使用满足Einstein狭义相对论的定位几率分布来建立连续性方程,因而无法对光子流建立连续性方程。正如大家所知,对量子粒子(如电子)是用波函数表达其空间定位性质,但光子是非局域粒子的事实造成我们无法为光子定义一个自洽的波函数,虽然在Weisskopf-Wigner模型理论框架内可以建立光子波函数的操作性定义。总之,不能为光子写出波方程。必须强调指出,光子不是一个刚性球,永远无法给出其尺寸和体积。光子的理论分析以广义Maxwell方程组和量子理论为基础,后者是指量子力学(QM)和量子电动力学(QED)。Schr?dinger方程(SE)非常适用于光纤的分析,这个事实证明QM对解释光子有用。然而,必须指出光子形象仍然模糊不清。光波并不完全等同于传统电磁波,因为光子是微观粒子,波特性遵从统计规律,波函数表达几率波模式。然而现时却缺少光子几率波的方程。本文将1936年发现的Proca方程组称为广义Maxwell方程组或修正的Maxwell方程组,在光子有静止质量时应由Proca方程组取代Maxwell方程组。这时,磁矢势A成为可观测量。人们已用许多方法进行了光子静质量测量,可以相信光子也是一种有质(量)粒子。在这种情况下,我们发现即使在自由空间(真空)条件下电磁波也可能作超光速传播。而按照Proca理论,将给光子带来几率波特性,但却仍然保持光子与电磁波之间的传统关系(光子仍是电磁波的量子)。……本文的结论是:光子是一种深具特殊性的微观粒子。由于光子静质量、引力、真空极化作用等因素的影响,在我们的新理论中速度的非恒值性是一个特点。这就可能造成对光速的多样化解释。因此我们追求对物理学中的这个基本问题的新理解——"真空中光速"的确切含意是什么?  相似文献   

16.
"斐索实验"说的是:"光速以特定的速度w在静止管道内静止液体中传播。现在如果上述液体以速度υ在仍然静止的管道内与光同向流动,那么光相对于管的速度是多少/斐索获得的实验结果是W=w+υ(1-1/n2),其中n=c/w是液体的折射率。"这是从爱因斯坦所著《狭义与广义相对论浅说》一书中,"速度相加定理斐索实验"一章读到的,很感兴趣,想试试用"辐斥物引论"来加以证明。根据辐斥物引论的质能转换律,δm=-mδRT/RT=-mδυ2/υ2证明如下:22(m/2)(c-w2)首先当液体流速为υ=o时,光子进入液体后光速由c变为w,则1-1理意义是光子n2=1-wc2=(m/2)c2=K的物-2质量(为m)在该流体内的动能变化率,根据辐斥物引论,同时也是光子质量的变化率δm m=(w2-c)c2=c2-w2c2=K。各种流体有各自的折射率n是不变的,因而在同一流体中w和K都不变。由于光子由真空进入液体传播,动能减少,质量增加,质量变化为正值,故+δm=m(c2-w2)/c2,在液体传播中的光子总质量为mT=m+δm。现在液体由静止转为以速度υ流动,υ〈w,υ与光速w同向,则光子相对管壁的速度应当是w+υ。因此,从理论上讲,光子的动能由(1 2)mTw2变化为(1 2)mT(w+υ)2,光子动能应该增加的量为E2K=12mT(w+υ)-12mTw2=12mT(2w+υ)υ可是,光线在液体中实际运动速度只遵守动能变化率K,故光子相对于管壁实际速度W只能接近于W/w+υ,动能实际增加量为E′k=12mT(W2-w2)=12mT(W-w)(W+w)=12mT(W-w)(2w+υ)动能实际增加量与理应增加量的比率只能为K,即E′1K=2mT(W-w)(2w+υ)2=W-w=2w+υ)K=c-w2E1K2mT(υυc22故得W-w=υ(1-w w2c2),W=w+//υ/1-÷èc2=w+//υ/1-1÷/èn2/这样辐斥物引论就很详细地解释了实验过程中的物理含意并很严谨地推导出了斐索实验的结果。同时,通过斐索实验的严格检验,辐斥物引论确实是符合实际的理论。?  相似文献   

17.
作为光子Schrodinger方程的一般解,我们构造出了一系列新颖的光子态矢函数.它们由光子的三重态本征态矢函数组成,包括一对非零的l阶本征态矢函数和单个的零阶本征态矢函数.由这些三重态本征态矢函数描述的光子具有单光子全部的量子特征:除了共同的属性诸如能量E=hω,动量ps=hκ之外,这些光子还表现出不同的角动量属性,分别是Ls+=lh,Ls-=-lh和Ls0=0;其中l≥1,也就是说,除了普通的一阶本征值Ls±=±h之外,对于单光子的角动量,实际上还存在不寻常的非零阶本征值Ls±=±lh和零阶本征值Ls0=0.利用该系列态矢函数,Laguerre-Gaussian模式结构激光束所显示出来的花样得以从量子力学的观点得到圆满解释,无论这些花样是非零的l阶模式,还是零阶模式.  相似文献   

18.
应用基于密度泛函平面波赝势方法(PWP),考虑广义梯度近似(GGA)下的交换关联势,计算具有Cllb型体心立方结构的Mosi2和WSi2单晶的电子态密度、能带结构、介电函数、吸收系数和折射率等电子结构及光学特性参量.计算结果表明:该类晶体的价带和导带部分重合,具有典型半金属特性,其费米面附近的态密度主要是由Mo或w原子中的d电子和Si原子3p态杂化而成,对晶体导电性贡献最大的是Mo和W原子中的d电子,其光学性质表现出各向异性,沿c轴方向介电函数和折射率都存在1个向低能方向偏移(红移)且峰值较大的峰;具有Cllb型结构的MoSi2和WSi2 由于Mo和w原子价电子不同导致其电子结构和光学性质存在微小差别.  相似文献   

19.
研究由辐射压力引起Fabry-Perot力光腔中动力学行为.从力光系统哈密顿量出发,探讨在失谐条件下力光腔中量子现象.引入散射矩阵方案来论证光子和声子以有效并且可逆方转换.这对于光学光子和微械阵子之间量子态转变提供了一个可行方案.光声转变预着一可行量子光学器件.同我们用量子郎之万方法和主方程方法这两方法推导最声子占有数来研究械振子态冷却,并且对这两方法进行了参数比较.出在么条件下哪方法更实用.  相似文献   

20.
应用电子与多光子集团非线性Compton散射模型,对多光子非线性Compton散射下激光等离子体和自生磁场对电子的加速进行了理论分析和数值模拟.结果表明,不仅由Compton散射光与入射光形成的耦合光以及耦合光与等离子体相互作用形成的自生磁场所构成的混合场能使做回旋共振运动的电子在较短的长度内加速到很高的能量,而且注入电子的初始参数及耦合光的参数对电子加速亦有较大影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号