首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Determinant selection is a macrophage dependent immune response gene function   总被引:17,自引:0,他引:17  
Rosenthal AS  Barcinski MA  Blake JT 《Nature》1977,267(5607):156-158
Immune response (Ir) genes are linked to the species histocompatibility complex and define as yet uncharacterised phenotypic products which control the immune response to thymus dependent antigens. Antibody formation and antigen induced T lymphocyte proliferation are two examples of immune phenomena which, in vivo and in vitro, operate under Ir gene influence. To clarify their mechanism of action and cellular location, we have examined the contribution of antigen structure (amino acid sequence and conformation to Ir gene control of antigen recognition by T lymphocytes) as well as to the critical role played by the antigen presenting macrophage in expression of that control. We report that immune response gene control of antigen recognition operates at least in part at the level of the macrophage.  相似文献   

2.
K Hirayama  S Matsushita  I Kikuchi  M Iuchi  N Ohta  T Sasazuki 《Nature》1987,327(6121):426-430
Antigens that produce an antibody response in some members of a species may fail to do so in others. The response to an antigen is controlled by a gene termed the immune response (Ir) gene, which is transmitted as a single dominant trait. We have provided evidence for similar immune suppression (Is) genes which control non-responsiveness through the antigen specific suppressor T cell. The non-responsiveness is also dominantly inherited and the Is genes are linked to the histocompatibility (HLA) antigen system. Here we report that the HLA-DR2 molecule from a non-responder haplotype (HLA-Dw12-DR2-DQwl) is required for the proliferative T cell response to schistosoma japonicum (Sj) antigen, as a restriction element, indicating that the HLA-DR2 is the product of the Ir gene, and that the HLA-DQwl molecule of the non-responder haplotype is important in the antigen-specific suppression of the response to this antigen, suggesting that it is the product of the Is gene. We therefore conclude that the HLA-DR and DQ molecules, which are controlled by the distinct genes in the MHC multigene family, regulate immune response and immune suppression and that the gene for HLA-DQ is epistatic to that for HLA-DR in controlling the immune response to schistosomal antigen in humans.  相似文献   

3.
R Henning  J Lange-Mutschler 《Nature》1983,305(5936):736-738
Simian virus 40 (SV40) large T antigen, a multifunctional protein necessary for lytic growth and cell transformation, is located mainly in the nucleus and in small amounts on the cell surface (surface T). Surface T may have a passive role in SV40 tumour rejection by cytotoxic T cells as a component of SV40-TSTA (tumour-specific transplantation antigen). The unusual induction of this immune response by immunizing mice with soluble T antigen led us to investigate the in vitro binding of T antigen to the surface of living cells in more detail. Our results show that native surface T and a minor subset of large T antigen having a high cell surface binding affinity in vitro, behave like integral membrane proteins. Several viral proteins including SV40 T antigen and cellular proteins seem to be linked to fatty acids (acylation). To analyse whether this mechanism is involved in the stable attachment of in vitro-bound T antigen to the plasma membrane of living target cells, we determined the degree of labelling of this molecule by using target cells prelabelled with 3H-fatty acid. Here we report that T antigen extracted from unlabelled SV40-transformed cells (SV80) becomes 3H-labelled after in vitro binding to the cell surface of 3H-palmitate-prelabelled HeLa cells. These results suggest that T antigen attached externally to living cells, may be anchored by tightly linked lipids.  相似文献   

4.
D Cantrell  A A Davies  M Londei  M Feldman  M J Crumpton 《Nature》1987,325(6104):540-542
In human T lymphocytes the antigen receptor (Ti) is associated non-covalently on the cell surface with the invariant T3 antigen which comprises 3 chains: two glycosylated polypeptides of relative molecular mass 26,000 (Mr 26K) and 21K (gamma and delta) and one non-N-glycosylated polypeptide of Mr 19K (epsilon). The proposed function of T3 is to transduce the activation signals delivered via the antigen receptor. Recently we have shown that phorbol esters, which stimulate protein kinase C, can induce phosphorylation of the gamma subunit of the T3 antigen. But the critical question is whether T3 phosphorylation occurs as a normal consequence of immune activation of T lymphocytes. In this respect, it has been shown that immune stimulation of murine T cells results in phosphorylation of Ti-associated polypeptides that may be the functional analogues of the human T3 antigen. We have therefore monitored T3 phosphorylation after exposure of human T cells to antigen or phytohaemagglutinin (PHA). The data show that both stimuli initiate phosphorylation of the gamma subunit of the T3 antigen which indicates that T3 phosphorylation is a physiological response to immune activation.  相似文献   

5.
A Winoto  J L Urban  N C Lan  J Goverman  L Hood  D Hansburg 《Nature》1986,324(6098):679-682
The T-cell receptor is a cell surface heterodimer consisting of an alpha and a beta chain that binds foreign antigen in the context of a cell surface molecule encoded by the major histocompatibility complex (MHC), thus restricting the T-cell response to the surface of antigen presenting cells. The variable (V) domain of the receptor binds antigen and MHC molecules and is composed of distinct regions encoded by separate gene elements--variable (V alpha and V beta), diversity (D beta) and joining (J alpha and J beta)--rearranged and joined during T-cell differentiation to generate contiguous V alpha and V beta genes. T-helper cells, which facilitate T and B cell responses, bind antigen in the context of a class II MHC molecule. The helper T-cell response to cytochrome c in mice is a well-defined model for studying the T-cell response to restricted antigen and MHC determinants. Only mice expressing certain class II molecules can respond to this antigen (Ek alpha Ek beta, Ek alpha Eb beta, Ev alpha Ev beta and Ek alpha Es beta). Most T cells appear to recognize the C-terminal peptide of cytochrome c (residues 81-104 in pigeon cytochrome c). We have raised helper T cells to pigeon cytochrome c or its C-terminal peptide analogues in four different MHC congenic strains of mice encoding each of the four responding class II molecules. We have isolated and sequenced seven V alpha genes and six V beta genes and analysed seven additional helper T cells by Northern blot to compare the structure of the V alpha and V beta gene segments with their antigen and MHC specificities. We have added five examples taken from the literature. These data show that a single V alpha gene segment is responsible for a large part of the response of mice to cytochrome c but there is no simple correlation of MHC restriction with gene segment use.  相似文献   

6.
Characterization of murine cytolytic-helper hybrid T cell clones   总被引:1,自引:0,他引:1  
W L Havran  F W Fitch 《Nature》1987,325(6099):65-67
L3T4, Lyt-2 and the T-cell receptor for antigen are cell-surface molecules involved in antigen specific T cell activation. We have constructed functional murine cytolytic-helper T-cell hybrid clones to study the link between expression of cell-surface molecules and specific cell function. Three of the clones express two antigen receptors and both Lyt-2 and L3T4, normally expressed on mutually exclusive subsets of mature T lymphocytes. The pattern of lymphokines produced by the hybrid cells in response to antigen was not controlled by the specific antigen receptor; both T-cell growth factor, produced only by the helper T-cell partner, and gamma-interferon, produced only by the cytolytic T-cell partner, were secreted when either antigen receptor was stimulated. However, cytolytic activity appeared to be restricted to the recognition of antigen by the T-cell receptor of the cytolytic partner. Thus cytolysis appears to be rightly linked to the antigen receptor of the cytolytic parent but lymphokine release is not tightly linked.  相似文献   

7.
Stefanová I  Dorfman JR  Germain RN 《Nature》2002,420(6914):429-434
Major histocompatibility complex (MHC) class I and II molecules are highly polymorphic proteins that bind and present foreign peptides to the clonally distributed alphabeta receptors (TCR) of T lymphocytes. As a population, the immature T lymphocytes generated in the thymus express a very diverse set of TCR specificities. A process of positive selection filters this broad repertoire to optimize peripheral T cells for antigen recognition in the context of available MHC products. Only those precursor T cells whose TCRs generate an adequate but not excessive signalling response to self-peptides bound to the expressed MHC proteins undergo successful maturation. Here we show that post-thymic self-recognition facilitates the antigen reactivity of mature T cells. Both experimental and physiological interruption of T-cell contact with self-peptide MHC ligands leads to a rapid decline in signalling and response sensitivity to foreign stimuli. Because the adaptive immune system must be recruited early in an infectious process when antigen is limiting, these findings suggest that positive selection ensures predictable T-cell recognition of available self-ligands, which in turn promotes efficient responses to pathogens.  相似文献   

8.
Can B cells turn on virgin T cells?   总被引:16,自引:0,他引:16  
O Lassila  O Vainio  P Matzinger 《Nature》1988,334(6179):253-255
The first event in the initiation of an immune response is the capture and presentation of antigen to T cells. Such presentation involves two distinct steps: (1) display of the antigen, which requires uptake, processing and re-expression of the antigen in association with MHC molecules on the presenting cell surface; and (2) triggering, in which the presenting cell provides signals leading to the activation of the responding T cell. Two sorts of cells can capture antigens, the 'professional' antigen-presenting cells (APCs) such as dendritic cells and macrophages, and the B cells. Both types of cells can display antigens and the APCs are known to be able to trigger resting T cells. But despite in vitro evidence that certain B-cell types can reactivate previously-activated T cells, it is not yet clear whether a B cell can initiate an immune response by providing the signals necessary to activate a resting T cell. We reasoned that resting B cells should not have this capacity because of the problems this would present with tolerance to self idiotypes. By exploiting the unique properties of the avian haematopoietic system, we have examined the presenting capacity of B cells in vivo and found that resting B cells are indeed unable to activate resting T cells.  相似文献   

9.
M Taniguchi  I Takei  T Tada 《Nature》1980,283(5743):227-228
Thymus-dependent (T) lymphocytes have been shown to have antigen specificity. The antigen receptor on T lymphocytes, in contrast to that on B lymphocytes, does not appear to be of the conventional immunoglobulin (Ig) type. Studies on the antigen-specific factors derived from helper and suppressor T cells (Ts) demonstrated that they possess determinants with antigen binding affinity and products of genes in the H-2 complex (MHC). Furthermore, antibodies against the variable region of Ig heavy chains or idiotypes have been shown to react with T-cell antigen receptors as well as antigen-specific helper and suppressor T-cell factors (TsF). It is, therefore, conceivable that at least two gene products are involved in the structural entity of these receptors: one each coded for by genes in either. To establish the molecular nature of the recognition component of T cells we have used homogeneous TsF from a T-cell hybridoma with a specific function. We report here that the antigen binding and I-J coded molecules on TsF are independently synthesised in the cytoplasm, and are secreted as an associated form of the two molecules; this association is required for antigen-specific suppression of antibody response.  相似文献   

10.
Wakim LM  Bevan MJ 《Nature》2011,471(7340):629-632
After an infection, cytotoxic T lymphocyte precursors proliferate and become effector cells by recognizing foreign peptides in the groove of major histocompatibility complex (MHC) class I molecules expressed by antigen-presenting cells (APCs). Professional APCs specialized for T-cell activation acquire viral antigen either by becoming infected themselves (direct presentation) or by phagocytosis of infected cells, followed by transfer of antigen to the cytosol, processing and MHC class I loading in a process referred to as cross-presentation. An alternative way, referred to as 'cross-dressing', by which an uninfected APC could present antigen was postulated to be by the transfer of preformed peptide-MHC complexes from the surface of an infected cell to the APC without the need of further processing. Here we show that this mechanism exists and boosts the antiviral response of mouse memory CD8(+) T cells. A number of publications have demonstrated sharing of peptide-loaded MHC molecules in vitro. Our in vitro experiments demonstrate that cross-dressing APCs do not acquire peptide-MHC complexes in the form of exosomes released by donor cells. Rather, the APCs and donor cells have to contact each other for the transfer to occur. After a viral infection, we could isolate cross-dressed APCs able to present viral antigen in vitro. Furthermore, using the diphtheria toxin system to selectively eliminate APCs that could only acquire viral peptide-MHC complexes by cross-dressing, we show that such presentation can promote the expansion of resting memory T cells. Notably, naive T cells were excluded from taking part in the response. Cross-dressing is a mechanism of antigen presentation used by dendritic cells that may have a significant role in activating previously primed CD8(+) T cells.  相似文献   

11.
G Gammon  K Dunn  N Shastri  A Oki  S Wilbur  E E Sercarz 《Nature》1986,319(6052):413-415
The mechanisms underlying T-lymphocyte tolerance induced in neonatal mice are still unknown. It is unclear whether the tolerant state is the result of inactivation of T cells on exposure to antigen during development or of active suppression by other T cells specific for the same antigen. To distinguish between these two hypotheses, we have analysed the specificity of tolerance to three cytochrome peptides which differ by only a single amino-acid substitution in the epitope recognized by proliferative T cells. The peptides stimulate proliferative responses which are highly specific with minimal cross-reactivity. As antigen-induced clonal inactivation would address the same cells normally activated by that antigen, the specificity of tolerance should exactly match that of the proliferative response to the antigen, and each cytochrome peptide should induce tolerance to itself alone. Conversely, as T-suppressor (Ts) and T-proliferative (Tp) cells almost invariably seem to recognize distinct, non-overlapping determinants on protein antigens, suppressor-mediated tolerance should not be affected by substitutions in the proliferative T-cell epitope. Tolerance would depend solely on the existence of a shared suppressor determinant, so each cytochrome peptide should induce cross-tolerance to the others. We found that the specificity of tolerance matched that of the proliferative response: each peptide induced tolerance for itself but the response to the variants was unaltered. This result strongly supports the hypothesis of clonal inactivation as an important mechanism in induction of neonatal tolerance.  相似文献   

12.
Human gamma delta+ T cells respond to mycobacterial heat-shock protein   总被引:54,自引:0,他引:54  
A Haregewoin  G Soman  R C Hom  R W Finberg 《Nature》1989,340(6231):309-312
Most T cells recognize antigen through the T-cell antigen receptor (TCR)alpha beta-CD3 complex on the T-cell surface. A small percentage of T cells, however, do not express alpha beta but a second type of TCR complex designated gamma delta (ref. 2). Unlike alpha beta+ lymphocytes, gamma delta+ lymphocytes do not generally express CD4 or CD8 molecules, and the nature of antigen recognition by these cells is unknown. To study antigen recognition by gamma delta+ lymphocytes we raised a gamma delta+ alpha beta- -CD4-CD8- line from an individual immune to PPD (purified protein derivative). This line showed a specific proliferative response to PPD and to a recombinant mycobacterial heat-shock protein (HSP) of relative molecular mass 65,000 (65K). The gamma delta+ line was shown to exhibit a major response to HSP in the presence of autologous antigen-presenting cells (APCs). Minor responses occurred, however, with APCs matched for some HLA class I or II antigens, whereas no response occurred with HLA-mismatched APCs. These findings, therefore, document the requirement of HSP-reactive gamma delta+ lymphocytes for histocompatible APCs.  相似文献   

13.
Expression and function of CD4 in a murine T-cell hybridoma   总被引:33,自引:0,他引:33  
The CD4 (T4) antigen was originally described as a phenotypic marker specific for helper T cells, and has recently been shown to be the receptor for the human immunodeficiency virus (HIV). Functional studies using monoclonal antibodies directed at CD4 and major histocompatibility complex (MHC) class II molecules led to the suggestion that CD4 binds to the MHC class II molecules expressed on stimulator cells, enhancing T-cell responsiveness by increasing the avidity of T cell-stimulator cell interaction and/or by transmitting a positive intracellular signal. But recent evidence that antibodies to CD4 inhibit T-cell responsiveness in the absence of any putative ligand for CD4 has been interpreted as suggesting that antibody-mediated inhibition may involve the transmission of a negative signal via the CD4 molecule instead. We have infected a murine T-cell hybridoma that produces interleukin 2 (IL-2) in response to human class II HLA-DR antigens with a retroviral vector containing CD4 cDNA. The resulting CD4-expressing hybridoma cell lines produce 6- to 20-fold more IL-2 in response to HLA-DR antigens than control cell lines. Furthermore, when antigen levels are suboptimal, the response of the cell lines is entirely CD4-dependent. The data presented here clearly demonstrate that CD4 can enhance T-cell responsiveness and may be crucial in the response to suboptimal levels of antigen.  相似文献   

14.
P van den Elsen  B A Shepley  M Cho  C Terhorst 《Nature》1985,314(6011):542-544
The antigen receptor on the surface of human T lymphocytes, which consists of a heterodimer of relative molecular mass (Mr) 90,000 (90K) (alpha- and beta-chains), is associated with the T3 antigen (gamma = 25K, delta = 20K and epsilon = 20K). A working model for the mode of action of the T3/T-cell receptor complex is that the clonotypic alpha- and beta-chains are involved in the recognition and binding of antigen in the context of polymorphic major histocompatibility complex (MHC) gene products on the surface of target cells. Antigen binding by the clonotypic receptor probably results in conformational changes in this structure which are recognized by and subsequently trigger the associated T3 complex to transmit signals into the cell, resulting in a proliferative response. The similarity in structure between murine and human clonotypic antigen receptors suggests that such a mechanism of recognition and activation also exists in mouse T lymphocytes, but so far there has been no evidence for the existence of a murine T3 complex. Here we demonstrate the existence of a T3 delta-chain mRNA in murine T lymphocytes. Our sequence data strongly suggest that this mouse mRNA codes for a complete T3 delta polypeptide chain and reveal some interesting properties of the protein.  相似文献   

15.
Reif K  Ekland EH  Ohl L  Nakano H  Lipp M  Förster R  Cyster JG 《Nature》2002,416(6876):94-99
B lymphocytes re-circulate between B-cell-rich compartments (follicles or B zones) in secondary lymphoid organs, surveying for antigen. After antigen binding, B cells move to the boundary of B and T zones to interact with T-helper cells. Despite the importance of B--T-cell interactions for the induction of antibody responses, the mechanism causing B-cell movement to the T zone has not been defined. Here we show that antigen-engaged B cells have increased expression of CCR7, the receptor for the T-zone chemokines CCL19 and CCL21, and that they exhibit increased responsiveness to both chemoattractants. In mice lacking lymphoid CCL19 and CCL21 chemokines, or with B cells that lack CCR7, antigen engagement fails to cause movement to the T zone. Using retroviral-mediated gene transfer we demonstrate that increased expression of CCR7 is sufficient to direct B cells to the T zone. Reciprocally, overexpression of CXCR5, the receptor for the B-zone chemokine CXCL13, is sufficient to overcome antigen-induced B-cell movement to the T zone. These findings define the mechanism of B-cell relocalization in response to antigen, and establish that cell position in vivo can be determined by the balance of responsiveness to chemoattractants made in separate but adjacent zones.  相似文献   

16.
T-lymphocyte immunity is likely to be an important component of the immune defence against the AIDS virus, because helper T cells are necessary for the antibody response as well as the cytotoxic response. We have previously predicted two antigenic sites of the viral envelope protein gp120 likely to be recognized by T lymphocytes, based on their ability to fold as amphipathic helices, and have demonstrated that these are recognized by T cells of mice immunized with gp120 (ref. 1). A peptide corresponding to one of these sites can also be induce immunity in mice to the whole gp120 protein. Because many clinically healthy seropositive blood donors have already lost their T-cell proliferative response to specific antigen, we tested the response to these synthetic peptides of lymphocytes from 14 healthy human volunteers who had been immunized with a recombinant vaccinia virus containing the AIDS viral envelope gene and boosted with a recombinant fragment. Eight of the 14 responded to one peptide, and four to the other peptide, not included in the boost. These antigenic sites recognized by human T cells may be useful components of a vaccine against AIDS. We also found a correlation between boosting with antigen-antibody complexes (compared to free antigen) and higher stimulation indices, suggesting a more effective method of immunization.  相似文献   

17.
A long-standing paradox in cellular immunology concerns the conditional requirement for CD4+ T-helper (T(H)) cells in the priming of cytotoxic CD8+ T lymphocyte (CTL) responses in vivo. Whereas CTL responses against certain viruses can be primed in the absence of CD4+ T cells, others, such as those mediated through 'cross-priming' by host antigen-presenting cells, are dependent on T(H) cells. A clearer understanding of the contribution of T(H) cells to CTL development has been hampered by the fact that most T(H)-independent responses have been demonstrated ex vivo as primary cytotoxic effectors, whereas T(H)-dependent responses generally require secondary in vitro re-stimulation for their detection. Here, we have monitored the primary and secondary responses of T(H)-dependent and T(H)-independent CTLs and find in both cases that CD4+ T cells are dispensable for primary expansion of CD8+ T cells and their differentiation into cytotoxic effectors. However, secondary CTL expansion (that is, a secondary response upon re-encounter with antigen) is wholly dependent on the presence of T(H) cells during, but not after, priming. Our results demonstrate that T-cell help is 'programmed' into CD8+ T cells during priming, conferring on these cells a hallmark of immune response memory: the capacity for functional expansion on re-encounter with antigen.  相似文献   

18.
Immune homeostasis in tissues is achieved through a delicate balance between pathogenic T-cell responses directed at tissue-specific antigens and the ability of the tissue to inhibit these responses. The mechanisms by which tissues and the immune system communicate to establish and maintain immune homeostasis are currently unknown. Clinical evidence suggests that chronic or repeated exposure to self antigen within tissues leads to an attenuation of pathological autoimmune responses, possibly as a means to mitigate inflammatory damage and preserve function. Many human organ-specific autoimmune diseases are characterized by the initial presentation of the disease being the most severe, with subsequent flares being of lesser severity and duration. In fact, these diseases often spontaneously resolve, despite persistent tissue autoantigen expression. In the practice of antigen-specific immunotherapy, allergens or self antigens are repeatedly injected in the skin, with a diminution of the inflammatory response occurring after each successive exposure. Although these findings indicate that tissues acquire the ability to attenuate autoimmune reactions upon repeated responses to antigens, the mechanism by which this occurs is unknown. Here we show that upon expression of self antigen in a peripheral tissue, thymus-derived regulatory T cells (T(reg) cells) become activated, proliferate and differentiate into more potent suppressors, which mediate resolution of organ-specific autoimmunity in mice. After resolution of the inflammatory response, activated T(reg) cells are maintained in the target tissue and are primed to attenuate subsequent autoimmune reactions when antigen is re-expressed. Thus, T(reg) cells function to confer 'regulatory memory' to the target tissue. These findings provide a framework for understanding how T(reg) cells respond when exposed to self antigen in peripheral tissues and offer mechanistic insight into how tissues regulate autoimmunity.  相似文献   

19.
T cells develop from prothymocytes which express no detectable antigen receptors to immature thymocytes with few receptors, eventually becoming mature thymocytes and peripheral T cells with 20,000-40,000 receptors per cell. Recent studies suggest that immature thymocytes are immunologically unresponsive. We have suggested that an early step in signal transduction following engagement of the T cell receptor might differ in immature and mature T cells. Here we examine anti-receptor antibody mediated induction of calcium mobilization in immature and mature T cells. Results indicate that antigen receptors on both immature and mature receptor-positive T cells transduce signals via calcium mobilization. Significant differences were observed, however, between these populations in the magnitude of influx of extracellular Ca2+ following binding of antireceptor antibody. Specifically immature cells show a much reduced Ca2+ influx response compared to mature cells which could result from a low Ca2+ channel frequency in the plasma membranes of immature T cells, or from less efficient activation of existing channels.  相似文献   

20.
Visualizing the generation of memory CD4 T cells in the whole body   总被引:64,自引:0,他引:64  
Reinhardt RL  Khoruts A  Merica R  Zell T  Jenkins MK 《Nature》2001,410(6824):101-105
It is thought that immunity depends on naive CD4 T cells that proliferate in response to microbial antigens, differentiate into memory cells that produce anti-microbial lymphokines, and migrate to sites of infection. Here we use immunohistology to enumerate individual naive CD4 T cells, specific for a model antigen, in the whole bodies of adult mice. The cells resided exclusively in secondary lymphoid tissues, such as the spleen and lymph nodes, in mice that were not exposed to antigen. After injection of antigen alone into the blood, the T cells proliferated, migrated to the lungs, liver, gut and salivary glands, and then disappeared from these organs. If antigen was injected with the microbial product lipopolysaccharide, proliferation and migration were enhanced, and two populations of memory cells survived for months: one in the lymph nodes that produced the growth factor interleukin-2, and a larger one in the non-lymphoid tissues that produced the anti-microbial lymphokine interferon-gamma. These results show that antigen recognition in the context of infection generates memory cells that are specialized to proliferate in the secondary lymphoid tissues or to fight infection at the site of microbial entry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号