首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
卷积神经网络(CNN)已被广泛用于图像处理领域,且通常在CPU和GPU平台上进行计算,然而在CNN推理阶段存在CPU计算速度慢和GPU功耗高的问题。鉴于现场可编程门阵列(field programmable gate array,FPGA)能够实现计算速度和功耗的平衡,针对当前在卷积结构设计、流水线设计、存储优化方面存在的问题,设计了基于FPGA的卷积神经网络并行加速结构。首先将图像数据和权值数据定点化为16 bit定点数,一定程度上减少了乘加运算的复杂性;然后根据卷积计算的并行特性,设计了一种高并行流水线卷积运算电路,提高了卷积运算性能,同时也对与片外存储进行数据交互的流水线存储结构进行了优化,以减少数据传输的时间消耗。实验结果表明,整体加速器在ImageNet数据集上的识别率达到94.6%,与近年来相关领域的报道结果相比,本文在计算性能方面有一定的优势。  相似文献   

2.
求解矩阵特征值的GPU实现   总被引:1,自引:0,他引:1  
提出了求解矩阵特征值的GPU(图形处理器)实现方法,分别用基于GPU的幂法和QR法求解矩阵的最大特征值和所有特征值。基于GPU的计算与基于CPU的计算相比较,证实其计算精度较好,运算时间比基于CPU的运算时间快2.7~7.6倍。  相似文献   

3.
最小噪声分离变换(MNF)是高光谱遥感影像分类中特征提取和去除噪声的有效方法.MNF算法涉及大量的矩阵运算,在实际工程的海量数据处理中存在计算时间长的问题.在分析MNF算法原理的基础上,运用图形处理单元(GPU)并行框架对该算法进行优化,并通过不同大小的高光谱遥感数据进行计算和分析.结果表明,随着影像数据量的递增,采用并行计算方式的提速比呈明显上升趋势,说明GPU并行方式对于计算密集型的大数据量处理具有良好的提速效果,为解决海量高光谱遥感数据处理速度慢的问题提供了思路.  相似文献   

4.
针对大数据量导致模板匹配目标识别算法计算时间长,难以满足快速检测的实际需求问题,在采用最新NVIDIA Tesla GPU构建的CPU+GPU异构平台上,设计了一种模板匹配目标识别并行算法.通过对模板图像数据常量化、输入图像数据极致流多处理器片上化和简化定位参数计算3方面优化了并行算法,并对算法进行性能测试.实验表明,该算法在保证识别效果的同时实时性明显提高.  相似文献   

5.
期权是金融领域中投资者用以进行套利和避险交易的一种衍生性金融工具.相对于CPU,GPU有着更好的并行处理能力和带宽优势,将其用于期权定价计算将极大地提高运算性能.本文以经典的美式期权定价模型的最小二乘蒙特卡洛方法为基础,提出了该算法基-GPU的一种实现.该文对一维期权合约的定价在CPU和GPU北进行了比较,来探索用GPU进行期权定价计算的优越性.测试结果表明,在保证相应的系统稳定性的前提下,针对不同的模拟次数和时间步数,GPU平台在运算性能上明显优于CPU平台.  相似文献   

6.
在CPU串行运算模式下实现大规模矩阵求逆是一个非常耗时的过程。为了解决这一问题,基于NVIDIA公司专为GPU(图形处理器)提供的CUDA(计算统一设备架构),从新的编程角度出发,利用GPU多线程并行处理技术,将矩阵求逆过程中大量的数据实现并行运算,从而获得了较大的加速比。同时,根据程序的执行结果,分析了GPU的单精度与双精度的浮点运算能力及其优、劣势。最后,通过分析数据传输时间对GPU性能的影响,总结出适合GPU的算法特征。  相似文献   

7.
当前GPU(图形处理器),即使是中端服务器配置的中端GPU也拥有强大的并行计算能力.不同于近期的研究成果,中端服务器可能配置有几块高端CPU和一块中端GPU,GPU能够提供额外的计算能力而不是提供比CPU更加强大的计算能力.本文以中端工作站上的Co-OLAP(协同OLAP)为中心,描述如何使中端GPU与强大的CPU协同以及如何在计算均衡的异构平台上分布数据和计算以使Co-OLAP模型简单而高效.根据实际的配置,基于内存容量,GPU显存容量,数据集模式和订制的AIR(数组地址引用)算法提出了最大高性能数据分布模型.Co-OLAP模型将数据划分为驻留于内存和GPU显存的数据集,OLAP计算也划分为CPU和GPU端的自适应计算负载来最小化CPU和GPU内存之间的数据传输代价.实验结果显示,在SF=20的SSB(星形模型基准)测试中,两块至强六核处理器的性能略优于一块NVIDA Quadra 5 000GPU(352个cuda核心)的处理性能,Co-OLAP模型可以将负载均衡分布在异构计算平台并使每个平台简单而高效.  相似文献   

8.
当前GPU(图形处理器),即使是中端服务器配置的中端GPU也拥有强大的并行计算能力.不同于近期的研究成果,中端服务器可能配置有几块高端CPU和一块中端GPU,GPU能够提供额外的计算能力而不是提供比CPU更加强大的计算能力.本文以中端工作站上的CoOLAP(协同OLAP)为中心,描述如何使中端GPU与强大的CPU协同以及如何在计算均衡的异构平台上分布数据和计算以使Co-OLAP模型简单而高效.根据实际的配置,基于内存容量,GPU显存容量,数据集模式和订制的AIR(数组地址引用)算法提出了最大高性能数据分布模型.CoOLAP模型将数据划分为驻留于内存和GPU显存的数据集,OLAP计算也划分为CPU和GPU端的自适应计算负载来最小化CPU和GPU内存之间的数据传输代价.实验结果显示,在SF=20的SSB(星形模型基准)测试中,两块至强六核处理器的性能略优于一块NVIDA Quadra 5 000GPU(352个cuda核心)的处理性能,Co-OLAP模型可以将负载均衡分布在异构计算平台并使每个平台简单而高效.  相似文献   

9.
研究蒙特卡罗控制变量方法在CPU(central processing unit)集群和GPU(graphic processing unit)计算环境中的实现问题.以离散取样的随机波动率下的算术平均亚式期权为例,选取合适的控制变量,分别研究了在CPU集群和GPU计算中算法与硬件并行加速两者的运算效率,并讨论了模型参数的变化对计算结果的影响.数值试验表明采用算法与硬件加速相结合的方法可以极大提高计算效率、缩短运算时间.  相似文献   

10.
基于GPU的弹性图像配准方法   总被引:2,自引:0,他引:2  
通常的弹性配准技术因其计算强度大,消耗时间长,难以满足实时应用的要求.新一代图形处理器(GPU)以其用户友好的可编程性和出色的并行计算能力,为解决该问题提供了新的途径.根据GPU的自身特点,以薄板样奈插值作为变换模型,构建了弹性配准计算平台.对二维单模态和多模态的两组图像进行实验,结果表明,相比于CPU,利用GPU可以更为迅速地获得变换参数,对于大尺寸、高分辨率或者多局部形变的图像,GPU的处理速度超出CPU 1个数量级以上.  相似文献   

11.
在高分辨率图像日益普及的情况下,Roberts边缘检测的处理速度急需进一步提高。在CPU表现不尽如人意的情况下,基于CPU/GPU和CPU/MIC的高度并行运算的研究愈加深入。在分析Roberts算法特点的基础上,将能并行的部分移植到GPU和MIC上进行。完成基于CPU/GPU和CPU/MIC的异构架构上的Roberts算法实现,并针对CPU/MIC上将程序进行向量化优化。实验结果表明,在相同单精度浮点运算能力下,GPU处理低分辨率图像的速度更快、加速比更高,但处理高分辨率图像时MIC的加速比最高为23.52,高于GPU的21.43。  相似文献   

12.
杜宏 《科技信息》2012,(19):127-128
随着计算机技术的飞速发展,在高性能计算方面出现了一项全新的具有革命性的技术:GPU/CPU协同并行计算。中国煤炭地球物理勘探研究院引进了恒泰爱普公司基于GPU/CPU协同并行计算的叠前时间偏移软件,将其纳入常规煤炭地震数据处理流程,满足了生产需要。实际应用效果表明:此偏移技术经济成本低,运算速度快,地震资料处理效果明显提高。  相似文献   

13.
图形处理单元(GPU)已经成为当今的主流计算系统的一个组成部分,现代GPU不仅是一个功能强大的图形引擎,也是一个高度并行的可编程处理器,GPU的峰值运算和内存带宽往往大幅超出其CPU所对应的峰值和内存带宽。本文介绍了基于GPU通用计算框架的JACKET加速MATLAB的计算仿真方法,通过FFT算法得出仿真结果,分析在CPU和GPU运行环境下的GFLOPS和加速比,最后得出基于GPU的MATLAB计算仿真程序运行效率在JACKET的加速下大大提高了。  相似文献   

14.
由于图形处理器(GPU)内存容量有限,其所能承载的深度学习网络模型规模受到很大限制。该文提出了一种深度学习混合运算策略,借助于Intel新的单指令多数据AVX2指令集,充分挖掘CPU对GPU的辅助支撑潜力。为节省GPU内存,将中间数据规模较大的网络层放在CPU端计算,并通过AVX2指令集提高CPU端的计算效率。核心技术点包括网络模型的切分与协调、基于AVX2指令的应用代码矢量化等。上述策略最终在Caffe上实现。在包括CIFAR-10、 ImageNet在内的典型数据集上的实验结果表明:采用混合运算策略后,Caffe能够正常运行更大型神经网络模型,并保持较高的执行效率。  相似文献   

15.
FFT算法是高度并行的分治算法,因此适合在GPU(Graphics Processing Unit,图形处理器)的CUDA(Compure Unified Device Architecture,计算统一设备体系结构)构架上实现.阐述了GPU用于通用计算的原理和方法,并在Geforce8800GT平台上完成了二维卷积FfTr的运算实验.实验结果表明,随着图像尺寸的增加,CPU和GPU上的运算量和运算时间大幅度增加,GPU上运算的速度提高倍数也随之增加,平均提升20倍左右.  相似文献   

16.
对基于统一计算设备架构(CUDA)的图形处理器(GPU)在图形处理方面的算法进行了研究和实现.针对目前图像处理算法日益复杂,性能要求越来越高,而传统的基于CPU的图像处理算法无法满足需求的情况,充分利用GPU突出的并行处理能力,采用CUDA技术,利用C++语言实现了图像处理算法.研究并设计了高斯模糊处理算法、彩色负片处理算法、透明合并处理算法的GPU并行运算流程,与CPU的性能对比表明基于GPU图像处理算法的效率更高.  相似文献   

17.
针对压缩感知系统实时应用的需要,探讨了A*OMP算法的并行设计及基于GPU的加速方法.将耗时长的矩阵逆运算转化为可并行的矩阵/向量操作,并结合算法本身的关联特性,进一步采用迭代法实现以降低其计算复杂度.利用GPU高效的并行运算能力,将算法中可并行的矩阵/向量计算映射到GPU上并行执行,在面向Matlab的Jacket软件平台上对整体串行算法进行了并行化的设计与实现.在NVIDIA Tesla K20Xm GPU和Intel(R)E5-2650 CPU上进行了测试,实验结果表明:对比CPU平台的串行实现,基于GPU的A*OMP算法整体上可获得约40倍的加速,实现了在保持系统较高重构质量的同时能有效降低计算时间,较好地满足了系统实时性的需要.  相似文献   

18.
为了能够有效提高基于时域的SAR回波仿真的运行速度,提出了一种基于图形处理器(GPU)架构的SAR回波仿真优化实现方法。该方法结合GPU的计算密度高、高度并行的特点并利用CUDA流在GPU上同时执行多个任务,实现任务并行、指令并行和数据并行的三重并行,极大地挖掘了回波模拟全过程的并行性,缩短了回波仿真的运算时间。实验结果表明,该方法相对于传统的CPU上的串行算法平均加速比达到128倍,可用于实时信号处理。  相似文献   

19.
为了能够有效提高基于时域的SAR回波仿真的运行速度,本文提出了一种基于GPU架构的SAR回波仿真优化实现方法。该方法结合GPU的计算密度高、高度并行的特点并利用CUDA流在GPU上同时执行多个任务,实现任务并行、指令并行和数据并行的三重并行,极大地挖掘了回波模拟全过程的并行性,缩短了回波仿真的运算时间。实验结果表明,该方法相对于传统的CPU上的串行算法平均加速比达到128倍,可用于实时信号处理。  相似文献   

20.
为了使用可扩展哈希表进行快速的数据访问,需要高效地更新索引以维护哈希表.文中提出了一种基于GPU的可扩展哈希算法g EHT.该算法充分利用GPU的并行计算能力,并采用表重用、预分裂技术,无锁地扩展和收缩表、插入和删除数据,实现了高并发地创建哈希表、更新索引和检索数据.实验结果表明,该算法的查询数据、维护哈希表和更新索引性能优于其他多核CPU的线性哈希及可扩展哈希算法,尤其是在高负载的情况下.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号