共查询到20条相似文献,搜索用时 15 毫秒
1.
农产品物流虽然具有普通物流的共同特点,但因其具有独特性和复杂性,这导致利用一般方法进行农产品物流需求预测不仅难度大,而且精度差。为了提高农产品物流需求预测的能力,应用基于结构风险最小化准则的标准支持向量机回归方法来研究农产品物流需求预测问题。在选择适当的参数和核函数的基础上,通过对实例研究,对时间序列数据进行预测,发现该方法能获得最小的训练相对误差和测试相对误差。结果表明,支持向量机回归是研究农产品物流需求预测的有效方法。 相似文献
2.
钻井成本是钻井公司成本的重要组成部分,对钻井成本进行准确预测,有利于提高钻井成本的控制和计划管理水平.应用作业成本法分析影响钻井成本的主要因素,结合某钻井公司钻井成本数据,运用支持向量机回归建立预测模型,同多元回归与BP神经网络回归进行对比,验证了支持向量机模型具有较高的预测精度. 相似文献
3.
基于支持向量机回归的煤层含气量预测 总被引:3,自引:1,他引:3
为了探讨煤层含气量的有效预测方法,将支持向量机回归方法用于建立煤层含气量预测模型。利用所选的测井参数,采用基于小样本理论的支持向量机回归方法建立测井参数与煤层含气量的关系模型,对煤层含气量进行预测。实例分析表明,选取适当的测井参数,利用支持向量机回归方法建立的煤层气含量预测模型,其预测结果与实测结果的误差小。 相似文献
4.
基于支持向量机回归的图书流通效用预测 总被引:1,自引:0,他引:1
通过一种基于支持向量机回归的统计数学模型,来评估图书馆现有书籍(尤其是新书)采购是否合理。实际案例结果表明,该模型能够预测每类新图书在现有条件下的采购的合理性。 相似文献
5.
基于支持回归支持向量机模型,建立了一种对时态数据预测的方法,可以对多属性时态数据进行预测,实验结果表明该方法在预测上具有一定的稳定性和准确性. 相似文献
6.
基于模糊回归支持向量机的短期负荷预测 总被引:2,自引:0,他引:2
支持向量机(SVM)是一种新颖的机器学习方法,具有泛化能力强、全局最优和计算速度快等突出优点.模糊数学在不确定性、不精确性及噪声引起的问题上,有其特有的计算分析操作,能有效地分析和处理模糊信息.研究了一种模糊回归支持向量机模型,该模型将两者有机结合,发挥了各自的优点.将其应用到电力系统短期负荷预测,仿真结果表明,所提方法不仅具有与支持向量机方法相同的预测精度,且提供了更多的有用信息. 相似文献
7.
在科学实验研究中,经常需要实验的观测数据,来寻求两个物理量之间近似的解析函数关系和曲线方程,这就是人们常说的数据拟合或曲线拟合,而且经常要从这些已知数据中总结规律,用以预报未知。本文引入支持向量机作为背景进行曲线拟合。此法能满足在小样本情况研究统计学习规律的理论,通过引入结构风险最小化准则来控制学习机器的容量,从而刻画了过度拟合与泛化能力之间的关系。 相似文献
8.
使用回归分析策略以文档满足用户的信息需求程度作为回归分析的目标值,利用回归支持向量机构建了信息检索模型.新模型不仅提供了融合不同来源特征的灵活框架,而且由于使用回归支持向量机寻找具有ε不敏感损失的回归函数,因此具有良好的泛化性能.实验表明,新模型性能优于目前主流的基于语言模型的信息检索方法. 相似文献
9.
基于支持向量机回归的港口吞吐量非线性组合预测 总被引:3,自引:0,他引:3
提出了一种基于支持向量机回归算法的港口吞吐量非线性组合建模预测方法,并运用该方法进行了港口吞吐量预测,同时将该预测结果与其他方法的预测结果进行了比较.结果表明,该方法具有很强的学习及泛化能力,在处理具有一定程度的不确定性的非线性系统的组合建模预测问题时具有很好的应用价值. 相似文献
10.
《广西民族大学学报》2017,(1)
针对企业内部备件管理的少库存甚至零库存需求,利用支持向量机回归算法,建立备件需求的关键影响因素为输入,备件需求为输出,建立备件SVR预测模型,并通过Matlab软件仿真验证. 相似文献
11.
轨道交通系统作为用电大户,将光伏发电系统接入轨道交通牵引供电系统不但可以降低交通系统的运营成本,而且可以很好地实现节能环保.但因光伏发电具有随机性、不确定性,将光伏发电直接接入轨道交通牵引供电系统,将会对轨道交通牵引供电系统带来一定的冲击,精确的光伏发电预测是减少光电并网冲击的有效解决方法.首先,采用自适应粒子群算法提... 相似文献
12.
以宝鸡市工业需水量为研究对象,运用改进的支持向量基模型对该地区1993~2003年的工业用水量进行模拟计算,并用宝鸡市2004年和2005年的工业用水量进行模型检验,与GM(1.1)模型所得的结果作比较,分析证明了改进的SVR模型方法能取得更好的结果,为研究区域的水资源综合规划提供了科学依据。 相似文献
13.
通过对标准的回归型支持向量机进行改进,得到一种新的学习算法.这种新的学习算法不仅能减少计算的复杂性,提高学习速度;同时在一定程度上能提高回归估计的精确性,特别是用于解决大规模样本问题. 相似文献
14.
针对煤炭自然发火预测问题,将因子分析理论与支持向量机算法相结合,构建了煤炭自燃的预测模型.采用SPSS软件对所选取预测煤炭自燃的8个指标进行因子分析,提取出4个主要因子,利用Matlab实现支持向量机模式识别,通过实际数据对模型训练与检验.研究结果表明:经因子分析降维后的SVM预测准确率高于未经因子分析的SVM预测结果,并验证了因子分析与支持向量机相结合可以较高精度实现对煤炭自燃的预测. 相似文献
15.
本文通过-支持向量机进行非线性回归的实例研究,通过交叉验证确定最优系数。结果在大部分的数据点,都取得了良好的效果。 相似文献
16.
本文提出了一种基于支持向量回归机的新颖的数字水印算法。利用支持向量回归机良好的学习能力来学习载体图像与水印之间的关系。在含有水印的图像受到常用的攻击后,利用这种关系能够较准确的将水印提取。仿真实验表明,本文算法对椒盐噪声、JPEG压缩、中值滤波和锐化等常规攻击以及扭曲、剪切等几何攻击均具有较好的鲁棒性,同时实现了数字水印的盲检测,整体性能明显优于现有SVM图像水印方案。 相似文献
17.
为准确评估滚动轴承运行状态、预测其性能退化趋势以及剩余寿命,提出一种改进回归型支持向量机(SVR)的滚动轴承寿命预测方法。提取轴承信号的时域和时频域特征,通过主成分分析(PCA)方法将特征指标融合成一个归一化综合指标来表征轴承运行状态;利用特征指标和综合指标构建训练和预测向量数据集,结合差分进化灰狼群算法(DEGWO)确定最优惩罚参数和径向基函数(RBF)核参数并构建回归型支持向量机模型;将预测数据集输入到DEGWO算法优化的SVR模型中得到轴承状态评估指标的预测值,实现轴承剩余寿命的预测。利用IEEE PHM 2012数据集验证所提方法的有效性,并将其结果与灰狼群算法(GWO)优化的SVR、网格搜索算法(GSA)优化的SVR和长短期记忆神经网络(LSTM)模型所得结果进行对比分析。仿真结果表明:与其他方法相比,采用所提方法得到的轴承剩余寿命预测均方误差分别降低了44.74%、66.67%、77.27%,决定系数则分别提高了7.25%、20.72%、11.94%,该结果说明了所提方法在轴承剩余寿命预测应用方面的优越性。 相似文献
18.
赵世安 《广西右江民族师专学报》2011,(3):56-60
利用主成分分析(PCA)方法优选神经网络集成个体,利用支持向量机回归集成生成输出结论,建立一个PCA支持向量机回归集成股市预测模型。试验表明,该模型能有效提高神经网络集成系统的泛化能力,预测精度高,稳定性好。 相似文献
19.
为了能更准确、容易地在线诊断出同步发电机转子绕组匝间短路故障,提出了一种基于支持向量回归机的励磁电流预测方法.利用同步发电机正常运行时不同工况下的机端电压、有功功率、无功功率和励磁电流来建立发电机励磁电流的支持向量回归机预测方法.利用该方法预测正常运行时所需励磁电流,并与在线实测的励磁电流进行比较,误差(相对误差)超过阈值就诊断为发生匝间短路故障.通过微型同步发电机动态模拟实验表明,该方法的精度优于BP神经网络法和遗传规划法. 相似文献
20.
基于最小二乘支持向量机回归的基坑变形预测 总被引:1,自引:0,他引:1
将最小二乘支持向量机回归用于基坑变形预测.根据基坑位移的实测时间序列资料,应用最小二乘支持向量机回归建立了基坑位移与时间的关系模型.研究结果表明,最小二乘支持向量机回归用于基坑变形预测,具有较高的预测精度.与通常采用的BP神经网络相比,该方法具有预测误差小、计算快速、所需数据少等优点. 相似文献