首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
结合某地铁区间盾构隧道所处围岩地质状况,引入荷载释放系数,采用三维有限元法对盾构隧道施工所引起的隧道应力场和位移场、管片环整环变形、地表三维沉隆变位与横、纵向沉隆曲线分布变化规律进行了深入研究,得到如下结论:(1)隧道施工将引起呈带状分布于隧道拱顶的较大管片环应力,且该应力随施工进程增幅较小。(2)管片环最大和最小位移分别呈带状分布于盾构隧道拱顶和拱底,且随着掌子面的前行略有增加并渐趋稳定。管片环呈横向变形趋势发展,拱顶下沉量最大,拱腰外扩量次之,而拱底隆起量最小。(3)随着掌子面的逼近,前方约15m处地表形成隆起,随后下沉且该沉降速率较大,两侧土体向隧道中线移动,地表沉降槽较大但渐趋稳定。  相似文献   

2.
结合某地铁区间隧道盾构施工近距穿越桥梁桩基的复杂条件,选取桥台与桥墩基础影响最大断面,对盾构施工引起地表沉降及桥梁桩基的变形、应力及内力进行三维数值模拟计算。结果表明:①双线隧道盾构推进引起地表最大沉降位于双线隧道中间某处,大于单线隧道引起的地表最大沉降,地表沉降随着两条隧道间距的减小而增加;②右线隧道盾构施工引起B0C0桥台桩基近隧道边桩产生的最大变形与内力均发生在距桩顶13 m处,最大横向挠曲变形、纵向挠曲变形分别为2. 0、4. 8 cm,边桩内力致使桥台桩基超出承载能力,承台发生倾向隧道一侧的倾斜和水平面内扭转,严重影响桩基的安全;③双线隧道盾构施工引起B7C7桥墩桩基近隧道边桩桩顶处产生最大位移,最大横向水平位移、纵向水平位移分别为2. 6、5. 2 cm,右侧桥墩桩基承台产生的最大横向水平位移、竖向位移、纵向水平位移分别为3. 2、3. 4、4. 6 cm,承台发生倾向隧道一侧的倾斜和水平面内扭转,倾斜值为0. 001 8,接近规范规定的允许值,盾构施工时须引起注意。基于上述分析结果,提出盾构近距推进时的施工监测及施工参数调整的建议。  相似文献   

3.
为了分析隧道在已有桥桩附近施工时对桥桩产生的影响,依托深圳市葵坝路隧道下穿高速公路桥梁段,采用三维有限差分法研究隧道动态施工引起的地表沉降以及桥梁桩基变形的规律,将数值模拟结果与现场监测结果进行对比分析,验证本文方法的正确性和有效性。为了进一步得到控制地表沉降和桥桩变形的最优注浆加固方案,通过改变注浆范围提出不进行注浆加固、原注浆加固以及优化后的注浆加固3种方案,并对这3种加固方案下地表沉降和桥桩变形进行对比分析。研究结果表明:优化后的注浆加固方案不但能够有效控制地表沉降和桥桩位移,而且能减小注浆范围,是最佳注浆加固方案。  相似文献   

4.
针对苏州轻轨1号线盾构隧道的施工情况,采用三维有限元数值模型,研究盾构施工对不同刚度及边长桩基的影响.结果表明:当盾构施工时,不同刚度桩身均偏向隧道移动,隧道轴线处的横向位移均最大.桩身横向位移最大值、竖向位移均随桩身刚度增大而变小,而且桩顶的竖向位移均大于桩底的竖向位移;当桩身弹性模量大于10GPa时,桩身竖向沉降减小不明显.随着桩身边长的逐渐增大,盾构施工引起的桩身最大横向位移、竖向位移、桩顶与桩底的竖向位移差均逐渐减小.盾构施工时应当监控桩基隧道轴线处横向位移及竖向沉降.  相似文献   

5.
路桥并线路基修筑引起既有桥桩产生挠曲、侧向位移,严重时可能会造成重大坍塌事故的发生。结合工程现场试验,针对道路施工对邻近桥桩影响问题提出就地固化联合复合地基加固新方法,联合数值模型分析就地固化深度、固化土弹性模量和复合地基相关因素对邻近桩基的保护效果。研究结果表明:搅拌桩加固影响深度为1.5倍桩长左右,素混凝土桩施工会对被动桩在0.75倍桩长左右处产生最大水平位移。就地固化(2.0 m)+水泥搅拌桩法(1.8 m)可极大减小被动桩浅层水平位移,保护桥桩的安全。当固化土水泥掺量为5%~7%、水泥搅拌桩水泥掺量为12%~18%时,提高水泥掺量对减小被动桩水平位移有着明显的作用。同时,将普通褥垫层水泥搅拌桩替换为就地固化+水泥搅拌桩复合地基,桩身最大负弯矩减小近16.6%。  相似文献   

6.
盾构法已成为我国城市地铁施工中一种重要的施工方法,由施工引起的地面沉降对其周围环境的影响是盾构隧道设计和施工中非常重要的问题。本文根据某地铁盾构隧道穿越桥桩工程,应用三维有限差分软件FLAC-3D进行了数值模拟,并对计算结果和实测结果进行了对比和分析,研究了隧道开挖中产生的位移对既有桥桩的影响,得出桩基变形的规律,并提出相应的工程建议。  相似文献   

7.
目的分析盾构掘进施工对桥桩的影响,评估盾构掘进对桩体位移、桩身轴力、弯矩等的影响程度.方法以石家庄轨道交通1号线下穿周汉河桥段为例,采用三维数值模拟的方法建立双线盾构穿越桥梁桩基础模型,对盾构掘进施工过程中所引起的桩基础的位移和内力进行分析,以数值分析为基础制定合理的监测方案,对盾构掘进穿越桥梁基础进行现场监测.结果盾构施工造成的桥桩应力变大,1号桩最大应力为0.86 MPa,2号桩最大应力为1.96 MPa远小于设计值22.4 MPa;左线盾构掘进完成后,地表的最大沉降为5 mm,右线盾构掘进完成后,地表最大沉降为10.2 mm;桥桩的最大水平位移为2.6 mm,其中2号桥桩的沉降最大,为9.35 mm;下穿周汉河桥桩段路面最大下陷值为6.9 mm,3处桥梁桩顶沉降分别为5.78 mm、5.51mm和5.43 mm,小于施工限值12 mm.结论数值模拟计算结果与现场实测数据的结果符合较好,说明模拟计算时所建立的数值模型与相关物理力学计算参数的确定是合理可靠的.  相似文献   

8.
基于合肥地铁盾构隧道穿越高架桥工程,用有限元软件MIDAS GTS/NX对开挖过程进行仿真模拟,分析了开挖过程对高架桩基的影响。结果表明:高架桥桩的位移总体上表现为距盾构区相同距离下的桥桩的位移值基本相同;距盾构区不同距离下的桥桩的位移变化表现形式基本相似,盾构隧道对高架桥的影响在安全限度范围内。  相似文献   

9.
为研究紧贴桥梁桩底某暗挖区间施工对桥桩的影响,以下穿小月河桥的北京地铁27号线(昌平线南延)盾构区间隧道工程为背景,对下穿小月河桥段区间盾构隧道进行了设计,并用迈达斯/岩土和隧道分析系统(MIDAS/geotechnical and tunnel analysis system, MIDAS/GTS)有限元软件对盾构区间近距离下穿小月河桥进行有限元分析。研究了大断面盾构区间下穿小月河桥施工过程中桥面、盖梁及桥桩位移变化规律特征;总结了盾构区间近距离下穿桥桩施工过程中桥桩附加应力变化规律;揭示了盾构区间近距离下穿小月河桥施工过程中桥桩差异沉降变化规律。  相似文献   

10.
本文依托苏州地铁S1线某区间盾构隧道,针对后期沿线可能出现的堆载问题,采用地层-结构法建立精细化三维数值分析模型,系统地探究了堆载条件下,隧道上覆、穿越和下卧软土地层对盾构管片变形的影响规律。结果表明:在地面堆载作用下,上覆荷载经过土层扩散,使管片变形沿纵向呈“正态分布”,竖向变形最大处位于堆载位置正下方的拱顶处;隧道最大水平位移发生在荷载作用位置正下方管片的左右拱腰处,并且左右拱腰同时产生向外的水平位移;当堆载中心在隧道正上方时,隧道下卧软土层时隧道变形量最大,其次是隧道穿越软土层时,隧道上覆软土层时对隧道竖向变形影响最小;隧道下卧土层的弹性模量对隧道结构变形影响最大,且弹性模量越小,结构变形越明显。  相似文献   

11.
为分析叠交地铁施工中既有隧道变形的影响因素,依托苏州市轨道交通S1线工程S1-TS-05标段,针对在砂质淤泥质土层中盾构上穿施工导致的既有隧道的沉降与变形,采用数值模拟方法分析隧道几何参数、空间位置、地层参数等因素对既有隧道的影响,结合现场监测验证数值计算的准确性。研究结果表明:在砂质淤泥质土层盾构上穿施工中,既有隧道的位移和管片变形以竖向沉降为主,且沉降量随着盾构直径的增大而增大,随着覆土层厚度、新旧隧道净距、下穿角度,以及地层弹性模量的增大而减小。现场监测数据与模拟结果较为吻合,既有隧道位移与距叠交中心距离呈负相关关系。研究结论可为同类型地层条件下叠交地铁隧道盾构施工变形控制提供参考。  相似文献   

12.
本文依托太原铁路枢纽新建西南环线盾构隧道,结合盾构施工中的监测资料,利用有限元分析软件进行数值模拟分析,在考虑流固耦合作用下,并结合实际监测资料,研究了盾构下穿高架桥时地表和地下结构的稳定性,得出了地表、桥承台和桥桩的变形规律及隧道周围孔隙水压力分布规律。研究结果表明:在富水地层中盾构下穿高架桥工程中,考虑流固耦合作用是必要且合理的;盾构隧道施工前采用隔离桩结合深层地层注浆的加固措施能有效地控制地表、桥承台和桥桩变形;盾构掘进过程中主要影响桥桩水平横向位移,对水平纵向和竖直方向位移影响较小;桥桩顶部受到的附加弯矩较大;深层地层注浆加固措施能减弱隧道周围流固耦合作用,降低隧道内涌水风险。  相似文献   

13.
基坑开挖会引起周围土体位移从而对邻近桩基造成负面影响,干扰桩基正常工作,导致桩身层产生附加弯矩、侧向位移。以郑州大四环及大河路快速化基坑临近桥梁桩基为背景,建立BP(Back Propagation)人工神经网络预测模型,同时结合三维数值模拟及实际监测数据对桩基水平位移进行预测。结果表明,基坑开挖对邻近桩基的影响会随着两者距离的增大而慢慢减弱,且桥梁产生的竖向位移在开挖过程中始终大于其他方向位移。通过将基于BP神经网络建立的预测模型与真实值对比验证了该预测模型可以快速、准确地预测基坑开挖引起的临近桥桩的变形值,可以为桩基位移的预测提供一定参考。  相似文献   

14.
采用两阶段方法简便地研究盾构隧道开挖引起的邻近群桩竖向位移。第1阶段,采用Loganathan公式计算盾构隧道开挖引起的桩基轴线处土体竖向位移。第2阶段,首先基于Winkler地基梁模型,将土体位移转化为荷载施加到桩基上;然后,结合叠加法,计算盾构隧道开挖引起的邻近单桩竖向位移;最后,考虑群桩间的土体遮拦效应,再结合叠加法求解出盾构隧道开挖引起的邻近群桩竖向位移。通过与有限元模拟结果进行对比,验证本文所提计算方法的准确性,并进一步分析各物理参量变化对群桩竖向位移的影响。研究结果表明:其余参数不变的情况下,隧道埋深和地层损失比增大均会增强盾构隧道开挖对邻近群桩的影响,导致邻近群桩的竖向位移增大;桩基直径增大导致其抵抗盾构隧道开挖影响的能力增加,进而引起邻近群桩的竖向位移略微减小;土体弹性模量增加导致邻近群桩顶端所受的向下荷载与底端所受的向上荷载均增加,进而引起邻近群桩的顶端竖向位移(最大位移)增大,底端竖向位移减小;桩基与隧道距离增加可减弱盾构隧道开挖对邻近桩基的影响,减小桩基竖向位移;群桩间距增大可引起桩基间的土体遮拦效应减弱,导致桩基的相对竖向位移增大。  相似文献   

15.
在城市轨道交通建设中,盾构法施工以其特有的技术优势得到推广使用。而盾构掘进过程中近距离下穿(侧穿)建筑物时会引起其周围土层应力、应变、位移等性质的改变,对既有建构筑物产生影响,尤其是在建(构)筑物受土体应力变化影响比较敏感的情况下,更容易产生破坏,危及建筑物的安全。本文根据某市轨道交通一号线工程地质情况,利用MADIS模拟盾构掘进过程,分析盾构掘进过程中土层的应力和位移变化对车站站房桩基础及盾构管片的应力变化的影响,总结盾构掘进过程中站房桩基础及不同工况下盾构管片的应力变化规律,以便采取相关措施减少盾构掘进过程对既有建(构)筑物基础的影响。  相似文献   

16.
针对地铁车站出入线明挖法施工,基坑零距离上跨下卧正线隧道的影响及控制问题,以国内首例基坑零距离上跨地铁隧道工程——厦门地铁某停车场与正线重叠段为依托,采用三维数值模拟并结合现场实测,研究出入线明挖基坑施工对下卧隧道的影响,以及采取变形控制措施的效果。结果表明:开挖紧邻下卧隧道的区域(第5~8区段)引起的地表沉降量和隧道上浮量分别占地表最终沉降和隧道最终上浮量的91.46%和90.53%;隧道纵向轴力从-606.4 kN/m增长到-1 939 kN/m,是基坑施工的关键阶段;通过对下卧盾构管片拉紧装置加固,在管片内部用8根[14b槽钢将管片纵向连接,加强管片连接整体性和稳定性,可以起到抑制不均匀沉降的作用;位于基坑范围外的隧道管片不用反压堆载,基坑范围内采用线性加载的方式,可以较好地控制下卧隧道的上浮量。施工实践表明,采取的隧道管片内堆载反压以及管片纵向加固等综合变形措施合理可靠,管片最大上浮量为17.7 mm,处于允许范围,盾构隧道结构安全稳定。  相似文献   

17.
为研究先盾后井与半盖挖法相结合的特殊基坑施工方法下关键结构的稳定性及变形特征,结合先盾后井半盖挖基坑工程实例,建立了三维有限元数值计算模型,对盖板和盾构管片的变形特征、盖板下内支撑内力变化的影响因素以及基坑施工对盾构管片的影响等进行了分析,并与实际监测数据进行了对比。结果表明:半盖挖基坑盖板的最大变形出现在盖板纵向中线附近,明挖侧变形量明显大于暗挖侧;盖板下内支撑内力的变化主要受支撑两端竖向位移变化的影响;半盖挖法与明挖法相比对管片的变形影响较小,灌沙回填对于抑制盾构管片的隆起变形作用明显;数值计算结果与实际监测数据吻合度较好,研究所得结论可为类似工程的设计及施工提供借鉴。  相似文献   

18.
为了保证基坑开挖对紧邻既有桥梁桩基的安全性,结合某在建地铁车站实际工程,应用三维有限元软件MIDAS,对基坑开挖过程中桩体深层水平位移、地表沉降及桥墩竖向位移进行三维有限元模拟,并对现场实际监测结果进行分析。结果表明:基坑开挖造成支护结构产生鼓肚状变形,模拟结果曲线与监测结果曲线趋势一致;地表沉降呈漏斗状,模拟结果与监测结果具有较好的一致性;开挖基坑西侧桥桩JP23处桥墩的竖向位移大于开挖基坑东侧桥桩JP24处桥墩的竖向位移,说明距离越小,基坑开挖对桥桩的影响越大;根据模拟不考虑全方位高压喷射注浆桩加固,得到地表沉降最大竖向位移增大54.5%,并且桥墩竖向位移超过预警值,说明全方位高压喷射注浆加固对控制开挖变形具有重要作用。  相似文献   

19.
为了分析输油管线下穿公路桥梁对桥梁桩基的影响,基于有限元软件Midas GTS开展数值模拟研究.通过模拟管道开挖前穿越段桩基处初始应力场、开挖后桩基应力场和回填后的应力场等工况,确定桩基的主应力和位移,分析管道施工对桥梁桩基的影响,得到管线施工对9号桩基影响最大,进而提出针对部分桥墩加强保护及监控量测,以及根据量测结果...  相似文献   

20.
当桥梁桩基设置在滑坡上时,常采用抗滑桩作为支挡结构,抗滑桩和桥梁桩基之间存在着相互作用。本文以子-姚高速崖坬沟3号大桥为研究背景,对桥梁桩基及抗滑桩的桩顶位移及桩侧土压力进行监测,分析抗滑桩与桥梁桩基相对位置改变对桥梁桩基受力变形的影响。同时,基于ABAQUS软件分析前后排抗滑桩不同埋置位置下抗滑桩对坡脚桥梁桩基及坡中桥梁桩基的影响。现场监测数据表明抗滑桩与桥梁桩基相对位置对桥梁桩基水平位移及桩侧土压力均有影响,在抗滑桩距离桥基8m和4m时,间距8m加固效果更佳。通过数值模拟,发现后排抗滑桩距离桥梁桩基过远或过近均对桥梁桩基加固效果有限,抗滑桩加固桥梁桩基存在一个最佳距离,对于坡脚桥梁桩基抗滑桩加固最佳距离为3h-5h(h是抗滑桩沿滑坡走向的截面长度),对于坡中桩抗滑桩加固最佳距离为2h-4h,而前排抗滑桩离桥基越近其加固效果越好。如果桥梁桩基在坡体中上部时,桥梁桩基前部土体较多可能会形成牵引式滑坡,需设置前排抗滑桩进行支护,综合考虑确定合理的加固位置。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号