首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
The problem of H_∞filtering for continuous-time systems with pointwise time-varying delay is investigated in this paper.By applying an innovation analysis in Krein space,a necessary and sufficient condition for the existence of an H_∞filter is derived in two methods:One is the partial differential equation approach,the other is the reorganized innovation analysis approach.The former gives a solution to the proposed H_∞filtering problem in terms of the solution of a partial differential equation with boundary conditions.The later gives an analytical solution to the proposed H_∞filtering problem in terms of the solutions of Riccati and matrix differential equations.  相似文献   

2.
This article considers delay dependent decentralized H∞ filtering for a class of uncertain interconnected systems, where the uncertainties are assumed to be time varying and satisfy the norm-bounded conditions. First, combining the Lyapunov-Krasovskii functional approach and the delay integral inequality of matrices, a sufficient condition of the existence of the robust decentralized H∞ filter is derived, which makes the error systems asymptotically stable and satisfies the H∞ norm of the transfer function from noise input to error output less than the specified up-bound on the basis of the form of uncertainties. Then, the above sufficient condition is transformed to a system of easily solvable LMIs via a series of equivalent transformation. Finally, the numerical simulation shows the efficiency of the main results.  相似文献   

3.
The problem of fault detection for linear discrete timevarying systems with multiplicative noise is dealt with.By using an observer-based robust fault detection filter(FDF) as a residual generator,the design of the FDF is formulated in the framework of H ∞ filtering for a class of stochastic time-varying systems.A sufficient condition for the existence of the FDF is derived in terms of a Riccati equation.The determination of the parameter matrices of the filter is converted into a quadratic optimization problem,and an analytical solution of the parameter matrices is obtained by solving the Riccati equation.Numerical examples are given to illustrate the effectiveness of the proposed method.  相似文献   

4.
The design of robust H∞ filtering problem of polytopic uncertain linear time-delay systems is addressed. The uncertain parameters are supposed to reside in a polytope. A parameter-dependent Lyapunov function approach is proposed for the design of filters that ensure a prescribed H∞performance level for al ad-missible uncertain parameters, which is different from the quadratic framework that entails fixed matrices for the entire uncertainty do-main. This idea is realized by careful y selecting the structure of the matrices involved in the products with system matrices. An extended H∞ sufficient condition for the existence of robust esti-mators is formulated in terms of linear matrix inequalities, which can be solved via efficient interior-point algorithms.  相似文献   

5.
This paper is concerned with the problem of robust H_∞ filtering for linear discrete-time systems with multiple state delays and polytopic uncertain parameters. Attention is focused on the design of full-order, reduced-order and zeroth-order robust H_∞ filters on the basis of a recently published parameter-dependent Lyapunov stability result. Sufficient conditions for the existence of such filters are formulated in terms of linear matrix inequalities, upon which admissible filters can be obtained from convex optimization problems. The proposed methodology has been shown, via a numerical example, to be much less conservative than previous filter design methods in the quadratic framework.  相似文献   

6.
The robust fault-tolerant control problem of linear uncertain systems is studied. It is shown that a solution for this problem can be obtained from a H∞ robust predictive controller (RMPC) by the method of linear matrix inequality (LMI). This approach has the advantages of both H∞ control and MPC: the robustness and ability to handle constraints explicitly. The robust closed-loop stability of the linear uncertain system with input and output constraints is proven under an actuator and sensor faults condition. Finally, satisfactory results of simulation experiments verify the validity of this algorithm.  相似文献   

7.
A robust reliability method for stability analysis and reliability-based stabilization of time-delay dynamic systems with uncertain but bounded parameters is presented by treating the uncertain parameters as interval variables.The performance function used for robust reliability analysis is defined by a delayindependent stability criterion.The design of robust controllers is carried out by solving a reliability-based optimization problem in which the control cost satisfying design requirements is minimized.This kind of treatment makes it possible to achieve a balance between the reliability and control cost in the design of controller when uncertainties must be taken into account.By the method,a robust reliability measure of the degree of stability of a time-delay uncertain system can be provided,and the maximum robustness bounds of uncertain parameters such that the time-delay system to be stable can be obtained.All the procedures are based on the linear matrix inequality approach and therefore can be carried out conveniently.The effectiveness and feasibility of the proposed method are demonstrated with two practical examples.It is shown by numerical simulations and comparison that it is meaningful to take the robust reliability into account in the control design of uncertain systems.  相似文献   

8.
This paper aims at solving the state filtering problem for linear systems with state constraints. Three classes of typical state constraints, i.e., linear equality, quadratic equality and inequality, are discussed. By using the linear relationships among different state variables, a reduced-order Kalman filter is derived for the system with linear equality constraints. Afterwards, such a solution is applied to the cases of the quadratic equality constraint and inequality constraints and the two constrained state filtering problems are transformed into two relative constrained optimization problems. Then they are solved by the Lagrangian multiplier and linear matrix inequality techniques, respectively. Finally, two simple tracking examples are provided to illustrate the effectiveness of the reduced-order filters.  相似文献   

9.
Since any disturbance and fault may lead to significant performance degradation in practical dynamical systems,it is essential for a system to be robust to disturbances but sensitive to faults.For this purpose,this paper proposes a robust fault-detection filter for linear discrete time-varying systems.The algorithm uses H∞ estimator to minimize the worst possible amplification from disturbances to estimate errors,and H_ index to maximize the minimum effect of faults on the residual output of the filter.This approach is applied to the MEMS-based INS/GPS.And simulation results show that the new algorithm can reduce the effect of unknown disturbances and has a high sensitivity to faults.  相似文献   

10.
This paper studies the problem of robust H∞ control design for a class of uncertain interconnected systems via state feedback. This class of systems are described by a state space model, which contains unknown nonlinear interaction and time-varying norm-bounded parametric uncertainties in state equation. Using the Riccati-equation-based approach we design state feedback control laws, which guarantee the decentralized stability with disturbance attenuation for the interconnected uncertain systems. A simple example of an interconnected uncertain linear system is presented to illustrate the results.  相似文献   

11.
A novel H∞ design methodology for a neural network-based nonlinear filtering scheme is addressed. Firstly, neural networks are employed to approximate the nonlinearities. Next, the nonlinear dynamic system is represented by the mode-dependent linear difference inclusion (LDI). Finally, based on the LDI model, a neural network-based nonlinear filter (NNBNF) is developed to minimize the upper bound of H∞ gain index of the estimation error under some linear matrix inequality (LMI) constraints. Compared with the existing nonlinear filters, NNBNF is time-invariant and numerically tractable. The validity and applicability of the proposed approach are successfully demonstrated in an illustrative example.  相似文献   

12.
A Krein space approach to the operator version of the corona problem(denoted by(CPOV))for both disk and polydisk is presented in this paper.In the case of polydisk,what we exhibit isonly a necessary and sufficient condition for(CPOV)to be solved.  相似文献   

13.
A robust task space tracking scheme is proposed for the free-flying space manipulator system.The dynamic equations of the system are derived via the law of momentum conservation,and then a linear state space representation is formulated by local linearization.A parametric approach is applied by using the eigenstructure assignment theory and the model reference method.A feedback stabilizing controller and a feedforward compensation controller are built based on the approach.Then an optimization procedure is followed after that to obtain the desired requirement and characteristics.Simulation results are presented to show the effectiveness of the proposed method.  相似文献   

14.
In this paper,the variable universe adaptive fuzzy controller based on variable gain H_∞ regulator(VGH_∞ R.) is designed to stabilize a quadruple inverted pendulum.The VGH_∞ R is a novel robust gain-scheduling approach.By utilizing VGH_∞ R technique,a more precise real-time feedback gain matrix,which is changing with states,is obtained.Via the variable gain matrix 10 state variables of quadruple inverted pendulum are transformed into a kind of synthesis error(E) and synthesis rate of change of error(EC) at sampling time.Therefore,the dimension of the multivariable system is reduced and the variable Universe adaptive fuzzy controller is built.Experiments illustrate the effectiveness of the proposed control scheme.  相似文献   

15.
Since in practice the line-of-sight(LOS)rate is difficult for a pursuer to measure accurately,the robust nonlinear H∞observer is applied to estimate it using LOS azimuths without any priori information of target maneuvers or its estimate in the presence of measurement noise.A threedimensional guidance law is implemented by replacing the LOS rate with their estimates using only relative range,speed,and LOS azimuths.The stability analyses and performed simulations results show that the presented approach is effective.  相似文献   

16.
The robust H∞ control problem for a class of uncertain Takagi-Sugeno fuzzy systems with timevarying state delays is studied. The uncertain parameters are supposed to reside in a polytope. Based on the delay-dependent Lyapunov functional method, a new delay-dependent robust H∞ fuzzy controller, which depends on the size of the delays and the derivative of the delays, is presented in term of linear matrix inequalities (LMIs). For all admissible uncertainties and delays, the controller guarantees not only the asymptotic stability of the system but also the prescribed H∞ attenuation level. In addition, the effectiveness of the proposed design method is demonstrated by a numerical example.  相似文献   

17.
The H∞ output feedback control problem for uncertain discrete-time switched systems is reasearched. A new characterization of stability and H∞ performance for the switched system under arbitrary switching is obtained by using switched Lyapunov function.Then,based on the characterization,a linear matrix inequality (LMI)approach is developed to design a switched output feedback controller which guarantees the stability and H∞ performance of the closed-loop system.A numerical example is presented to demonstrate the application of the proposed method.  相似文献   

18.
The fault detection problem for the nonlinear networked control system(NCS) with packet dropout and delay is investigated.A nonlinear stochastic system model is proposed to account for the NCS with random packet dropout and networkinduced non-uniformly distributed time-varying delay in both from sensor to controller(S/C) and from controller to actuator(C/A).Based on the obtained NCS model,employing an observer-based fault detection filter as the residual generator,the addressed fault detection problem is converted into an auxiliary nonlinear H∞ control problem.Then,with the help of Lyapunov functional approach,a sufficient condition for the desired fault detection filter is constructed in terms of certain linear matrix inequalities,which depend on not only the delay interval but also the delay interval occurrence rate and successful packet communication rate.Especially,a trade-off phenomenon between the maximum allowable delay bound and successful data packet transmission rate is found,which is typically resulted from the limited bandwidth of communication networks.The effectiveness of the proposed method is demonstrated by a simulation example.  相似文献   

19.
IMPROVED ROBUST H-INFINITY ESTIMATION FOR UNCERTAIN CONTINUOUS-TIME SYSTEMS   总被引:1,自引:0,他引:1  
The design of full-order robust estimators is investigated for continuous-time polytopic uncertain systems. The main purpose is to obtain a stable linear estimator such that the estimation error system remains robustly stable with a prescribed H∞ attenuation level. Firstly, a simple alternative proof is given for an improved LMI representation of H∞ performance proposed recently. Based on the performance criterion which keeps the Lyapunov matrix out of the product of the system dynamic matrices, a sufficient condition for the existence of the robust estimator is provided in terms of linear matrix inequalities. It is shown that the proposed design strategy allows the use of parameterdependent Lyapunov functions and hence it is less conservative than the earlier results. A numerical example is employed to illustrate the feasibility and advantage of the proposed design.  相似文献   

20.
The mean-square exponential stability problem is investigated for a class of stochastic time-varying delay systems with Markovian jumping parameters.By decomposing the delay interval into multiple equidistant subintervals,a new delay-dependent and decay-rate-dependent criterion is presented based on constructing a novel Lyapunov functional and employing stochastic analysis technique.Besides,the decay rate has no conventional constraint and can be selected according to different practical conditions.Finally,two numerical examples are provided to show that the obtained result has less conservatism than some existing ones in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号