首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《矿物冶金与材料学报》2021,28(12):2001-2007
Graphene oxide (GO) wrapped Fe3O4 nanoparticles (NPs) were prepared by coating the Fe3O4 NPs with a SiO2 layer, and then modifying by amino groups, which interact with the GO nanosheets to form covalent bonding. The SiO2 coating layer plays a key role in integrating the magnetic nanoparticles with the GO nanosheets. The effect of the amount of SiO2 on the morphology, structure, adsorption, and regenerability of the composites was studied in detail. An appropriate SiO2 layer can effectively induce the GO nanosheets to completely wrap the Fe3O4 NPs, forming a core-shell Fe3O4@SiO2@GO composite where Fe3O4@SiO2 NPs are firmly encapsulated by GO nanosheets. The optimized Fe3O4@SiO2@GO sample exhibits a high saturated adsorption capacity of 253 mg·g?1 Pb(II) cations from wastewater, and the adsorption process is well fitted by Langmuir adsorption model. Notably, the composite displays excellent regeneration, maintaining a ~90% adsorption capacity for five cycles, while other samples decrease their adsorption capacity rapidly. This work provides a theoretical guidance to improve the regeneration of the GO-based adsorbents.  相似文献   

2.
《矿物冶金与材料学报》2021,28(12):1908-1916
The effect of CaCO3, Na2CO3, and CaF2 on the reduction roasting and magnetic separation of high-phosphorus iron ore containing phosphorus in the form of Fe3PO7 and apatite was investigated. The results revealed that Na2CO3 had the most significant effect on iron recovery and dephosphorization, followed by CaCO3, the effect of CaF2 was negligible. The mechanisms of CaCO3, Na2CO3, and CaF2 were investigated using X-ray diffraction (XRD), scanning electron microscopy and energy dispersive spectrometry (SEM–EDS). Without additives, Fe3PO7 was reduced to elemental phosphorus and formed an iron–phosphorus alloy with metallic iron. The addition of CaCO3 reacted with Fe3PO7 to generate an enormous amount of Ca3(PO4)2 and promoted the reduction of iron oxides. However, the growth of iron particles was inhibited. With the addition of Na2CO3, the phosphorus in Fe3PO7 migrated to nepheline and Na2CO3 improved the reduction of iron oxides and growth of iron particles. Therefore, the recovery of iron and the separation of iron and phosphorus were the best. In contrast, CaF2 reacted with Fe3PO7 to form fine Ca3(PO4)2 particles scattered around the iron particles, making the separation of iron and phosphorus difficult.  相似文献   

3.
4.
Carbonated decomposition of hydrogarnet is one of the vital reactions of the calcification–carbonation method, which is designed to dispose of low-grade bauxite and Bayer red mud and is a novel eco-friendly method. In this study, the effect of the silica saturation coefficient (x) on the carbonation of hydrogarnet was investigated from the kinetic perspective. The results indicated that the carbonation of hydrogarnets with different x values (x = 0.27, 0.36, 0.70, and 0.73) underwent two stages with significantly different rates, and the kinetic mechanisms of the two stages can be described by the kinetic functions R3 and D3. The apparent activation energies at Stages 1 and 2 were 41.96–81.64 and 14.80–34.84 kJ/mol, respectively. Moreover, the corresponding limiting steps of the two stages were interfacial chemical reaction and diffusion.  相似文献   

5.
《矿物冶金与材料学报》2020,27(10):1347-1352
A new method of high-gravity combustion synthesis (HGCS) followed by post-treatment (PT) is reported for preparing high-performance high-entropy alloys (HEAs), Cr0.9FeNi2.5V0.2Al0.5 alloy, whereby cheap thermite powder is used as the raw material. In this process, the HEA melt and the ceramic melt are rapidly formed by a strong exothermic combustion synthesis reaction and completely separated under a high-gravity field. Then, the master alloy is obtained after cooling. Subsequently, the master alloy is sequentially subjected to conventional vacuum arc melting (VAM), homogenization treatment, cold rolling, and annealing treatment to realize a tensile strength, yield strength, and elongation of 1250 MPa, 1075 MPa, and 2.9%, respectively. The present method is increasingly attractive due to its low cost of raw materials and the intermediate product obtained without high-temperature heating. Based on the calculation of phase separation kinetics in the high-temperature melt, it is expected that the final alloys with high performance can be prepared directly across master alloys with higher high-gravity coefficients.  相似文献   

6.
Computational simulations and high-temperature measurements of velocities near the surface of a mold were carried out by using the rod deflection method to study the effects of various operating parameters on the flow field in slab continuous casting (CC) molds with narrow widths for the production of automobile exposed panels. Reasonable agreement between the calculated results and measured subsurface velocities of liquid steel was obtained under different operating parameters of the CC process. The simulation results reveal that the flow field in the horizontal plane located 50 mm from the meniscus can be used as the characteristic flow field to optimize the flow field of molten steel in the mold. Increases in casting speed can increase the subsurface velocity of molten steel and shift the position of the vortex core downward in the downward circulation zone. The flow field of liquid steel in a 1040 mm-wide slab CC mold can be improved by an Ar gas flow rate of 7 L·min?1 and casting speed of 1.7 m·min?1. Under the present experimental conditions, the double-roll flow pattern is generally stable at a submerged entry nozzle immersion depth of 170 mm.  相似文献   

7.
Electroslag remelting (ESR) gives a combination of liquid metal refining and solidification structure control. One of the typical aspects of liquid metal refining during ESR for the advanced steel and alloy production is desulfurization. It involves two patterns, i.e., slag–metal reaction and gas–slag reaction (gasifying desulfurization). In this paper, the advances in desulfurization practices of ESR are reviewed. The effects of processing parameters, including the initial sulfur level of consumable electrode, remelting atmosphere, deoxidation schemes of ESR, slag composition, melting rate, and electrical parameters on the desulfurization in ESR are assessed. The interrelation between desulfurization and sulfide inclusion evolution during ESR is discussed, and advancements in the production of sulfur-bearing steel at a high-sulfur level during ESR are described. The remaining challenges for future work are also proposed.  相似文献   

8.
We report the picosecond laser ablation of aluminum targets immersed in a polar organic liquid (chloroform, CHCl3) with ~2 ps laser pulses at an input energy of ~350 μJ. The synthesized aluminum nanoparticles exhibited a surface plasmon resonance peak at ~340 nm. Scanning electron microscopy images of Al nanoparticles demonstrated the spherical morphology with an average size of (27 ± 3.6) nm. The formation of smaller spherical Al nanoparticles and the diminished growth could be from the formation of electric double layers on the Al nanoparticles. In addition to spherical aluminum nanoparticles, triangular/pentagonal/hexagonal nanoparticles were also observed in the colloidal solution. Field emission scanning electron microscopy images of ablated Al targets demonstrated laser induced periodic surface structures (LIPSSs), which were the high spatial frequency LIPSSs (HSF-LIPSSs) since their grating period was ~280 nm. Additionally, coarse structures with a period of ~700 nm were observed.  相似文献   

9.
The mineral transition and formation mechanism of calcium aluminate compounds in CaO?Al2O3?Na2O system during the high-temperature sintering process were systematically investigated using DSC?TG, XRD, SEM?EDS, FTIR, and Raman spectra, and the crystal structure of Na4Ca3(AlO2)10 was also simulated by Material Studio software. The results indicated that the minerals formed during the sintering process included Na4Ca3(AlO2)10, CaO·Al2O3, and 12CaO·7Al2O3, and the content of Na4Ca3(AlO2)10 could reach 92wt% when sintered at 1200°C for 30 min. The main formation stage of Na4Ca3(AlO2)10 occurred at temperatures from 970 to 1100°C, and the content could reach 82wt% when the reaction temperature increased to 1100°C. The crystal system of Na4Ca3(AlO2)10 was tetragonal, and the cells preferred to grow along crystal planes (110) and (210). The formation of Na4Ca3(AlO2)10 was an exothermic reaction that followed a secondary reaction model, and its activation energy was 223.97 kJ/mol.  相似文献   

10.
Ore particles, especially fine interlayers, commonly segregate in heap stacking, leading to undesirable flow paths and changeable flow velocity fields of packed beds. Computed tomography (CT), COMSOL Multiphysics, and MATLAB were utilized to quantify pore structures and visualize flow behavior inside packed beds with segregated fine interlayers. The formation of fine interlayers was accompanied with the segregation of particles in packed beds. Fine particles reached the upper position of the packed beds during stacking. CT revealed that the average porosity of fine interlayers (24.21%) was significantly lower than that of the heap packed by coarse ores (37.42%), which directly affected the formation of flow paths. Specifically, the potential flow paths in the internal regions of fine interlayers were undeveloped. Fluid flowed and bypassed the fine interlayers and along the sides of the packed beds. Flow velocity also indicated that the flow paths easily gathered in the pore throat where flow velocity (1.8 × 10?5 m/s) suddenly increased. Fluid stagnant regions with a flow velocity lower than 0.2 × 10?5 m/s appeared in flow paths with a large diameter.  相似文献   

11.
通过机械方法回收溢出油液评价项目的初始化工作进行了研究.该工作的重点在于对吸油剂的评价.为了评价不同类型的吸油剂的有效性,吸油剂在不同形态下受到测试,并且进行了定量的比较,从而为在给定条件下吸油剂的选择提供了依据.  相似文献   

12.
Chemical structure of immature sulfur-rich kerogen and composition of immature sulfur-rich crude oil in Jianghun oil field have been studied. In molecular level, crude oil differs from thermolysed and chemolysed products of kerogen but does resemble the bitumen in immature sulfur-rich source rock. Therefore, immature sulfur-rich oil may be derived from the expelling of bitumen rather than from thermal cracking of kerogen.  相似文献   

13.
针对柴油机湿式油底壳的振动特性问题,以4120s型柴油机为例,采用有限元法对不同充液量的油底壳模态频率和振型特征进行分析,并对存在油液时的油壳系统进行增加加强板的结构改进.结果表明:随着机油量的增加,油底壳模态频率逐渐降低,模态振型也发生了显著变化;形貌优化后的油底壳,固有频率有较大提高,刚度大幅度增加,有利于减振降噪...  相似文献   

14.
采用理论分析和实船应用检验相结合的方法,对大连远洋运输公司的72000 DWT双壳体原油船航行过程中,油舱货油自然冷却过程进行分析研究.根据非稳态导热集总参数法建立油船油舱保温数学模型,研制了油船货油保温计算软件.通过实船应用比较,软件计算的保温时间和实际的保温时间最大误差为13%.  相似文献   

15.
中原油田洒落原油对地下水污染的研究   总被引:2,自引:0,他引:2  
洒落石油对地下水的污染主要分布在井下作业频繁的采油井井场内。在原油污染中心地带,表层土壤受污染最重,边缘地带稍轻;原油组分中非饱和烃运移能力最强;在天然条件下,原油污染物自然降解率较小;在污染区内,包气带中油污染向下运移并不与表层油污染浓度成正比。油污染在包气带中迁移受油污染浓度大小的控制,当石油污染物的浓度大于近似残余饱和度,污染物向下迁移,对地下水产生污染。  相似文献   

16.
利用超临界萃取技术 (SFEF)将土哈稠油中大于 5 0 0℃的渣油分离为 7个窄馏分 ,并对各个窄馏分及其残渣进行了全面的分析。在微型催化裂化反应器上考察了各个馏分油的催化裂化反应性能 ,将反应结果与抽出油的组成及性质进行了关联。结果表明 ,超临界萃取技术是一种较为有效的分离渣油的方法 ,分离出的各个窄馏分的裂化性能与抽出油的组成及性质密切相关 ,各个窄馏分的催化裂化反应性能随窄馏分抽出率的增大而逐渐变差。  相似文献   

17.
土哈渣油催化裂化性能研究   总被引:1,自引:0,他引:1  
利用超临界萃取技术(SFEF)将土哈稠油中大于500℃的渣油分离为7个窄馏分,并对各个窄馏分及其残渣进行了全面的分析。在微型催化裂化反应器上考察了各个馏分油的催化裂化反应性能,将反应结果与抽出油的组成及性质进行了关联。结果表明,超临界萃取技术是一种较为有效的分离渣油的方法,分离出的各个窄馏分的裂化性能与抽出油的组成及性质密切相关,各个窄馏分的催化裂化反应性能随窄馏分抽出率的增大而逐渐变差。  相似文献   

18.
海上油田提高采收率的控水技术   总被引:6,自引:1,他引:5  
根据海上油田采油特点,分析了海上油田控水的迫切性.海上油田产出水主要来源于注入水、边水和底水.为了提高采收率,任何形式的产出水都要控制.海上油田控水技术由注水井调剖技术和油井堵水技术组成,这两项技术都由措施必要性判断、堵剂选择、堵剂用量计算和堵剂放置工艺等技术组成.海上油田调剖堵水成功的矿场试验说明,海上油田控水技术具有可行性和广阔的应用前景.  相似文献   

19.
为了评价驱油剂的洗油效率,给出了粘附功因子、界面张力因子和润湿性因子的定义,通过室内实验测定了几种化学驱油剂的接触角、界面张力和粘附功,进而计算出其3个因子值.分析结果表明驱油剂通过降低界面张力因子和润湿性因子,使粘附功因子大幅度减小;化学剂对润湿性和界面张力的影响不同,可以用界面张力因子和润湿性因子来判断驱油过程中界面张力和润湿性发挥作用的程度,对油湿转向水湿的过程,润湿性因子越小,润湿性改变越大;界面张力因子越小,化学剂对界面张力的影响越大;粘附功决定着驱油剂的洗油效率,粘附功越小,洗油效率越好.  相似文献   

20.
为了评价驱油剂的洗油效率,给出了粘附功因子、界面张力因子和润湿性因子的定义,通过室内实验测定了几种化学驱油剂的接触角、界面张力和粘附功,进而计算出其3个因子值。分析结果表明:驱油剂通过降低界面张力因子和润湿性因子,使粘附功因子大幅度减小;化学剂对润湿性和界面张力的影响不同,可以用界面张力因子和润湿性因子来判断驱油过程中界面张力和润湿性发挥作用的程度,对油湿转向水湿的过程,润湿性因子越小,润湿性改变越大;界面张力因子越小,化学剂对界面张力的影响越大;粘附功决定着驱油剂的洗油效率,粘附功越小,洗油效率越好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号