首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
混凝土致裂应力与内外约束和徐变的关系   总被引:3,自引:0,他引:3  
温度变形、自生体积变形和徐变等受内外约束是混凝土裂缝产生的主要原因.为研究水化反应过程中混凝土内部由于温差、温变幅度和线胀系数差异存在的相互制约关系,减少内外约束下温度和自生体积变形及早龄期混凝土开裂,需要对混凝土温度场和应力场进行精确的仿真.通过仿真计算并根据现场模型试验结果对混凝土温度应变、自生体积应变、徐变、内外约束应变进行反分析研究表明,早龄期混凝土致裂应力主要与徐变和内外约束有关  相似文献   

2.
水化放热过程中,混凝土产生内外温差和上下层温差,而温差、自生体积收缩变形、干缩和约束等是混凝土裂缝形成的主要原因.根据混凝土热力学特性研究成果,对混凝土裂缝产生机理和温控防裂措施进行分析研究,研究表明合适的保温结合内部水管冷却可有效防止裂缝的产生.  相似文献   

3.
干缩裂缝多出现在混凝土养护结束后的一段时间或是混凝土浇筑完毕后的一周左右。水泥浆中水分的蒸发会产生干缩,且这种收缩是不可逆的。混凝土受外部条件的影响,表面水分损失过快,变形较大,内部湿度变化较小变形较小,较大的表面干缩变形受到混凝土内部约束,产生较大拉应力而产生裂缝。相对湿度越低,水泥浆体干缩越大。干缩裂缝通常会影响混凝土的抗渗性,  相似文献   

4.
徐冰  刘宇文  张猛 《科技信息》2013,(18):399-399
<正>大体积混凝土的主要特点就是体积大,一般实体最小尺寸大于或等于1m。它的表面系数比较小,水泥水化热释放比较集中,内部温升比较快。混凝土内外温差较大时,会使混凝土产生温度裂缝,影响结构安全和正常使用。一、在施工过程中存在的问题施工过程中容易产生温度裂缝,大体积混凝土裂缝产生的原因:1.水泥水化热。水泥水化过程中放出大量的热,且主要集中在浇筑后的2-5d左右,从而使混凝土内部温度升高。尤其对于大体积混凝土来讲,这种现象更加严重。2.混凝土的收缩。混凝土在空气中硬结时体积减小的现象称为混凝土收缩。混凝土在不受外力的情况下的这种自发变形受到外部约束  相似文献   

5.
氧化镁微膨胀混凝土性能研究   总被引:1,自引:0,他引:1  
研究了氧化镁水泥混凝土的物理、力学、变形等性能.结果表明:在混凝土中掺入氧化镁使其自生体积膨胀,其膨胀具有延迟性的特点;混凝土的抗压强度随氧化镁掺量的增加而降低;混凝土的自生体积变形随氧化镁掺量的增加而增大;养护温度越高,自生体积变形越大;氧化镁掺量对混凝土的干缩变形及绝热温升没有明显影响.  相似文献   

6.
董志广  刘坤 《科技资讯》2010,(19):126-126
混凝土在恒温绝湿条件下,由于胶凝材料的水化作用而引起的体积变形称为自生体积变形。普通水泥混凝土的自生体积变形大多为收缩,极少数为膨胀,一般在-100~100×10-6范围内。锦屏一级水电站大坝混凝土配合比试验在未采取任何措施的情况下部分体积变形为微膨胀,因此本文旨在分析、对比同类工程试验数据,总结经验,最终确定影响混凝土自生体积变形的主要因素。  相似文献   

7.
裂缝是混凝土建筑物的主要病害,病理主要是由混凝土干缩、自身质量、水泥水化热、温度、钢筋锈蚀、地基变形、荷载、碱骨料反应、地基冻胀等原因引起。  相似文献   

8.
裂缝是混凝土建筑物主要的老化病害之一,主要由干缩、砼自身质量、水泥水化热、温度、钢筋锈蚀、地基变形、荷载、碱骨料反应、地基冻胀等原因引起。  相似文献   

9.
大体积混凝土结构,由于水泥水化过程中释放的水化热引起的温度变化和混凝土收缩产生的温度应力及收缩应力,是其产生裂缝的主要原因,而大体积混凝土的内部温升,又可视为强化水泥硬化、充分利用其活性的能源.因而在大体积混凝土施工中采取减少水泥用量,控制温差应力,稳定其体积,辅之以水冷却及其他措施,可以有效地控制温度应力和温度变形裂缝的扩展,取得较好的技术经济效果.  相似文献   

10.
在民用住宅建设中,现浇钢筋混凝土楼板裂缝是工程常见的质量通病,原因是混凝土的收缩变形固有特性造成的,主要表现形式为浇筑初期的凝缩变形、硬化过程中的干缩变形、在恒温绝湿条件下由凝胶材料的水化作用引起的自生收缩变形和温度下降引起的冷缩变形。在大量工程实践中说明,只要施工过程中针对各影响因素严格遵守施工规范,弄清裂缝出现的原因,加以正确的处理措施,裂缝是可以得到控制和避免的。  相似文献   

11.
深部矿井围岩应力变形的ANSYS数值模拟   总被引:4,自引:1,他引:4  
针对矿井开发日益向地壳深处发展的现状,根据岩石力学和流变力学原理,分析了矿井在深部开采条件下开采深度和温度对围岩应力和变形的影响.采用大型通用有限元分析软件ANSYS,建立二维模型并对某矿井进行了数值模拟,184号节点在1 500和2 000 m深度下,矿井岩石的应力分别为42和56 MPa,位移分别为1.18和1.57 m.结果表明:围岩的变形随时间的增加而增加,并且围岩的应力与变形随开采深度(温度)的增加而增加.  相似文献   

12.
通过不同热加工参数下的热压缩试验,研究了新型阀门钢5Cr9Si3的高温变形行为.5Cr9Si3钢在850~900℃和1000~1100℃温度区间内峰值应力分别随温度的升高而减小,而在900~1000℃温度区间内出现峰值应力随温度升高而增大的异常现象.进一步的微观组织及相结构演化分析表明:5Cr9Si3钢在900~1000℃温度区间内发生了由铁素体向奥氏体的转变,产生奥氏体相变强化;同时,随着变形温度的提高,碳化物的回溶造成碳元素和铬元素对5Cr9Si3基体固溶强化效果增强.相变强化和固溶强化是导致5Cr9Si3在900~1000℃温度区间内流变应力异常变化的主要原因.  相似文献   

13.
通过高温压缩试验研究齿轮钢SAE8620H在950~1100℃、应变速率0.01~10 s-1条件下的高温变形行为.该合金钢的流动应力符合稳态流变特征,流变应力随变形温度升高以及应变速率降低而减小,其本构方程可以采用双曲正弦方程来描述.基于峰值应力、应变速率和温度相关数据推导出SAE8620H高温变形激活能Q=280359.9 J·mol-1.根据变形量40%和60%下应力构建该齿轮钢的热加工图,通过热加工图中耗散值及流变失稳区确定其热变形工艺参数范围. SAE8620H钢在在变形程度较小时宜选取低的应变速率进行成形,而在变形程度大时则要选取低温低应变速率或者高温高应变速率.  相似文献   

14.
沥青路面剪切变形预估模型   总被引:1,自引:1,他引:0  
将考虑温度影响的材料参数引入对路面剪切变形的机理和特征分析,利用轮辙试验和环道试验数据建立沥青路面剪切变形预估方程,并通过实地调查数据对该模型进行标定和验证.结果表明:同一深度上取多点最大剪应力的平均值作为该深度剪应力分析值可较为准确地反映沥青层的受剪状况;通过分析、拟合试验数据获得的包含剪应力分析值与抗剪强度之比、温度、速度和加载次数等参数的剪切变形预估方程形式合理,具有较为可靠的拟合和预估结果.  相似文献   

15.
环境温度作用下隧道结构变形分析   总被引:2,自引:0,他引:2       下载免费PDF全文
为了探讨隧道结构的变形缝合理设置问题,对某隧道的钢筋混凝土超长结构进行了使用阶段环境温度影响下结构变形现场量测,应用一维非稳态热传导理论和温度应力理论对环境温度影响下隧道结构的温度和变形进行计算.计算表明,对于超长混凝土隧道结构,使用期内环境温度的变化对于结构的温度变形影响不能忽视,变形缝的设置需要考虑永久变形缝的容许变形和混凝土施工时间的影响.  相似文献   

16.
精密机械热变形计算中,通常只考虑温度在零件中的分布状况对零件变形所产生的影响。以车削零件为研究对象,论述了传统方法的局限性,指出残余应力在零件热变形中所起的作用.在计算轴类零件热变形时考虑了残余应力的影响因素,建立了新的热变形数学模型.对残余应力在长期时效处理后消失时零件变形的规律进行了初步研究,最后通过算例,对残余应力引起的零件变形进行了计算,验证了残余应力对零件变形的影响是不容忽视的。  相似文献   

17.
采用Gleeble1500热模拟机,研究了半固态ZL201铝合金的压缩变形过程以及不同应变速率、变形量及变形温度对触变强度的影响.研究结果表明:当应变速率相同时,变形温度越高,ZL201合金半固态试样的触变强度越低.当变形温度相同时,在较低应变速率下(.ε5s-1),随着应变速率的增大,触变强度又有减小的趋势.结果可为半固态成形工艺参数制定提供基础数据.  相似文献   

18.
为研究锂离子电池温升所产生的热应力和形变分布,建立了快充条件下18650锂离子电池的热模型,仿真得到不同环境温度下电池的温度场分布,并在此基础上建立顺序热-力耦合模型,进一步分析电池的热应力和形变分布.结果表明:随着环境温度增加,电池最高温度增大,温差减小,充电末期电池温度稍有下降且降幅随环境温度增加而减小;最大应力值出现在电池柱面外边中间部分,最小应力分布在轴向两端;最大形变分布在电池轴向两端,最小形变出现在电池中心区域;电池的应力和形变随环境温度增加分别呈减小和增大趋势.  相似文献   

19.
固态焊接中的等效压缩变形及应力应变分析   总被引:4,自引:4,他引:4  
对固态压接升温、保温过程中存在的等效压缩变形现象及其产生进行了阐述,并在试验基础上对伴随等效压缩变形的应力应变进行了分析。结果表明:等效塑性压缩变形是焊件在升温、保温过程中受约束压力作用不能胀大而产生的塑性变形的累积,它提供了形成固态焊接接头所必需的塑性变形。等效压缩变形使焊件在被约束方向上的尺寸保持恒定,而约束压力则在焊件由表及里温升的差异、屈服极限随温度变化的不均匀性以及应力松弛的综合作用下发生增大、持平、快速减小直至缓慢减小的变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号