首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
以锆酸四丁酯为锆源,采用溶胶-凝胶法结合化学液相沉积(CLD),即在凝胶老化过程中用部分水解的锆酸四丁酯和正硅酸四乙酯进行液相修饰,经过乙醇超临界干燥(SCFD)制备耐高温ZrO_2/SiO_2块体复合气凝胶。采用透射电子显微镜(TEM)、傅里叶红外光谱仪(FT-IR)、X线衍射仪(XRD)、N_2吸附分析仪等仪器表征了ZrO_2/SiO_2复合气凝胶的形貌、表面基团、晶相和孔结构,着重研究其耐热性能。结果表明:制备的ZrO_2/SiO_2复合气凝胶具有优秀的耐温性能,1 000℃处理2 h后,仍为四方相,线收缩率仅为12%,比表面积高达186 m2/g。  相似文献   

2.
采用溶胶-凝胶法和乙醇超临界干燥工艺,以无机铝盐为原料,制备完整块状的SiO_2-Al_2O_3复合气凝胶。通过傅里叶红外光谱仪(FT-IR)和X线衍射仪(XRD)研究气凝胶在热处理过程中物相结构的变化;采用扫描电子显微镜(SEM)和透射电子显微镜(TEM)对气凝胶的表面形貌和组织结构进行观察;采用N2吸附-脱附测试来研究热处理过程中气凝胶孔结构的变化。结果表明:SiO_2-Al_2O_3复合气凝胶中SiO_2相主要以无定形形式存在,而Al_2O_3相主要以针叶状或长条状的勃姆石多晶形式存在,当温度达到1 100℃时,复合气凝胶中开始产生莫来石相。随着热处理温度的升高,SiO_2-Al_2O_3复合气凝胶的比表面积逐渐减小,直到1 000℃时,比表面积仍高达416.23 m~2/g,同时高温热处理改善了气凝胶内部网络结构,使孔径分布更加均匀。  相似文献   

3.
以仲丁醇铝为前驱体,盐酸为催化剂,采用溶胶-凝胶法再经过超临界修饰和干燥,制备出块体Al_2O_3气凝胶。将莫来石纤维跟Al_2O_3溶胶混合,用同样的方法制备出纤维复合Al_2O_3气凝胶。用场发射扫描电子显微镜(FESEM)、热分析仪、孔径分布仪和X线衍射仪(XRD)表征Al_2O_3气凝胶及复合样品的结构和热学性能。结果表明:经过超临界修饰的Al_2O_3气凝胶具有更高的结晶度和耐温性能,并通过与莫来石纤维复合,其力学强度得到了有效的提高。  相似文献   

4.
以聚丙烯纤维为增强相,与SiO_2进行复合,经疏水改性与超临界CO_2干燥制备超疏水聚丙烯纤维/SiO_2气凝胶复合材料。采用N_2吸附-脱附法、傅里叶变换红外光谱仪(FT-IR)、X线衍射仪(XRD)、扫描电子显微镜(SEM)、接触角测定仪对疏水性聚丙烯纤维/SiO_2气凝胶复合材料的结构与性能进行表征。结果表明:所制得的样品比表面积为800~950 m~2/g,平均孔径为8~13 nm,属于介孔材料。水接触角随改性剂浓度的增大而增大,且能达到超疏水水平。对各类油吸附倍率最高可达7.54倍,且具有一定的循环使用效率。  相似文献   

5.
用具有环境友好性的甲基三乙氧基硅烷(MTES)替代甲基三甲氧基硅烷,在水溶剂体系中,利用阳离子表面活性剂制备SiO_2气凝胶基体,并以耐高温的聚酰亚胺短切纤维为增强相,制备得到了柔性疏水的SiO_2气凝胶复合隔热材料。研究了聚酰亚胺短切纤维含量对复合材料热、力学性能的影响。结果表明:制备得到的SiO_2气凝胶复合材料具有纤维状三维骨架结构并且气凝胶基体与增强相之间结合紧密,使得复合材料具有超疏水性,疏水角高达171°;具有良好的隔热保温性能,导热系数在0.021~0.022 5 W/(m·K),初始热分解高达521℃;具有较好的弹性,压缩20%形变后样品未发生增强相与基体的分离现象,并且卸压后能回弹至12%形变处。随着纤维含量的增加,复合材料里压缩强度(20%形变)逐渐增大,但是回弹率并没有较大的变化。  相似文献   

6.
为了缓解二氧化硅(SiO_2)负极材料的体积膨胀开裂,改善其电化学性能,通过溶胶-凝胶法制备出三维网状结构的SiO_2气凝胶纳米材料及其石墨烯改性材料(rGO/SiO_2)和碳纳米管改性材料(CNT/SiO_2),研究石墨烯和碳纳米管改性对SiO_2气凝胶负极材料的储锂性能影响.利用X射线衍射分析仪、光电子能谱仪和扫描电子显微镜进行表征.电化学性能研究表明,石墨烯和碳纳米管改性提高了SiO_2气凝胶负极材料的导电性、充放电比容量和库伦效率,其中CNT/SiO_2提升作用更加显著,循环稳定性能最好.因此,在减轻材料体积膨胀和结构开裂、粉化,增加SiO_2气凝胶负极材料的导电性方面,碳纳米管改性优于石墨烯改性.  相似文献   

7.
以甲基三乙氧基硅烷作为前驱体,碳纳米管为添加物,采用溶胶-凝胶法和常压干燥制备碳纳米管掺杂改性的柔性SiO_2气凝胶。通过扫描电子显微镜(SEM)、傅里叶变换红外光谱(FT-IR)、热重-差示扫描量热仪(TGDSC)及机械测试对制备的气凝胶进行表征,研究碳纳米管对柔性SiO_2气凝胶性能的影响。结果表明:碳纳米管的添加有效地增加了柔性SiO_2气凝胶的强度,柔性气凝胶的热稳定性从455℃提高到563℃,并提高了气凝胶的使用性能。  相似文献   

8.
以正硅酸乙酯为硅源,与苯并■嗪单体(BO)在酸催化条件下共聚,制备聚苯并■嗪(PBO)SiO_2气凝胶。将PBO-SiO_2气凝胶与纤维复合,在常温常压条件下制备纤维增强PBO-SiO_2气凝胶复合材料。通过现代分析方法研究气凝胶和纤维增强气凝胶复合材料的结构特征,并采用Hot Disk热常数分析仪和石英灯单面加热测试纤维增强PBO-SiO_2气凝胶复合材料的常温热导率和高温隔热性能,采用数显氧指数仪测试材料的极限氧指数(LOI)。结果表明:制备的复合材料密度为0.30 g/cm~3,常温热导率为0.042 W/(m·K),LOI为37.5。复合材料具有良好的力学性能,弯曲强度为0.90 MPa,5%形变的压缩强度为0.24 MPa。热面温度为800℃,加热1 000 s,材料的冷面温度仅为221℃,石英灯单面加热测试前后复合材料的形状保持不变。  相似文献   

9.
以玄武岩纤维为增强相,与SiO_2溶胶复合,经超临界干燥制备疏水SiO_2气凝胶复合材料。采用N_2吸附法、接触角分析仪、傅里叶红外光谱仪、激光法导热仪、万能试验机对玄武岩纤维增强SiO_2气凝胶复合材料的结构和性能进行表征。结果表明:玄武岩纤维增强SiO_2气凝胶复合材料的比表面积为398.31 m~2/g、孔体积为1.076 9cm~3/g、接触角为152°、吸水率为1.7%,材料具有良好的隔热性能和耐低温性能,其常温热导率为0.032 W/(m·K),在深冷条件下体积没有发生明显的收缩。玄武岩纤维的加入提供了力学支撑,使材料具有良好的力学性能,其抗压强度为0.37 MPa(10%应变)、0.85 MPa(25%应变)和1.65 MPa(50%应变)。  相似文献   

10.
以正硅酸乙酯(TEOS)、仲丁醇铝(ASB)为前驱体,采用溶胶-凝胶及超临界干燥工艺,分别制备硅酸铝纤维(ASF)、Al_2O_3纤维(AF)和莫来石纤维(MF)增强Al_2O_3-SiO_2气凝胶(ASC)隔热复合材料,并对材料的微观结构、耐温性、高温热导率和力学性能进行研究。结果表明:纳米多孔Al_2O_3-SiO_2气凝胶均匀填充到纤维间的孔隙中,并紧密包裹在纤维的表面,显著减少了纤维间的搭接,Al_2O_3-SiO_2气凝胶隔热复合材料中的纤维增强相发挥了增强、增韧功能。纤维种类对材料耐温性、高温热导率有较大的影响,对力学性能影响较小,AF/ASC和MF/ASC复合材料耐温性能较高,经1 200℃、30 min热处理后,材料厚度方向平均线收缩率分别为-2.5%和2.7%;MF/ASC复合材料的热导率较低,当热面温度为1 100℃时热导率达到0.065 W/(m·K);3种纤维增强Al_2O_3-SiO_2气凝胶隔热复合材料的力学性能相当,材料3%应变的压缩应力分别为0.22、0.21和0.19 MPa。  相似文献   

11.
利用壳聚糖高分子溶液与部分脱乙酰几丁质纳米纤维分散液复合制备水凝胶及气凝胶微球,考察几丁质纳米纤维对复合气凝胶的影响。结果表明:所制备的几丁质纳米纤维/壳聚糖复合水凝胶微球的力学性能较单一壳聚糖水凝胶有所提高,并且复合气凝胶微球的孔隙性能相对于单一壳聚糖气凝胶得到显著改善。当复合凝胶微球中几丁质纳米纤维与壳聚糖的质量比为1∶5时,几丁质纳米纤维/壳聚糖复合气凝胶的比表面积从单一壳聚糖凝胶微球的46 m~2/g提高至230 m~2/g,孔径主要分布在20~60 nm,添加了几丁质纳米纤维的复合气凝胶微球的表面及内部的网状结构更为丰富。  相似文献   

12.
以聚乙烯吡咯烷酮(PVP)和乙酸镍(NiC_4H_6O_4·4H_2O)为主要原料,采用静电纺丝技术分别制备纯氧化镍(NiO)纳米纤维及还原氧化石墨烯(rGO)/NiO复合纳米纤维.利用X射线衍射仪、扫描电子显微镜和透射电子显微镜对材料的结构和形貌进行了表征.透射电子显微镜观察结果直观证实了rGO/NiO复合纳米纤维中rGO成分的存在,而且rGO复合对NiO纳米纤维的晶体结构及形貌均无明显影响.以H_2S为主要目标气体,研究了rGO复合对NiO纳米管纤维气敏性能的影响,发现rGO复合显著提高了NiO纳米纤维对H_2S气体的敏感性,特别是1.0%rGO复合量的NiO纳米纤维对H_2S气体具有最佳的气敏性能,其对体积分数为10×10~(-6)的H_2S气体的室温灵敏度可达167.11,是纯NiO纳米纤维的23.8倍.  相似文献   

13.
采用溶胶-凝胶过程和静电纺丝技术相结合的方法,以聚丙烯腈(PAN)和硝酸铋为前驱物,制备了PAN/Bi(NO3)3复合纤维,该复合纤维经高温煅烧得到了Bi2O3纳米纤维.利用X射线衍射、扫描电子显微镜、红外光谱、紫外可见漫反射光谱等测试技术对样品的结构与性能进行了表征.结果表明,Bi2O3纳米纤维为规则的一维结构,直径分布均匀,具有较强的紫外光吸收性能.以罗丹明B为模拟污染物,考察了Bi2O3纳米纤维的光催化性能.实验结果表明,煅烧温度为500℃时,光催化活性最佳,TOC去除率为48.7%.  相似文献   

14.
以尿素为氮源,通过溶胶-凝胶法并结合超临界干燥、惰性氛围碳化、碳热还原和空气除碳等工艺制备块状氮化硅(Si_3N_4)气凝胶。通过不同温度热处理,研究Si_3N_4气凝胶的形成过程及机制。采用X线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X线光电子能谱仪(XPS)、N_2吸附-脱附仪分析材料的相组成、微观结构和孔结构等。结果表明:当热处理温度为1 500℃时,体系中以Si_3N_4相为主,继续升高热处理温度至1 600℃时,Si_3N_4相转化为SiC相。Si_3N_4气凝胶中Si_3N_4相和SiO_2相分别占74.4%和25.6%。Si_3N_4气凝胶以Si_3N_4纳米颗粒的形式存在,其粒径为20~40 nm,孔径为20~40 nm,比表面积高达519.58 m~2/g。Si_3N_4气凝胶的室温热导率为0.045 W/(m·K),其形成机制是基于C、SiO_2和N_2之间的气-固(VS)生长。  相似文献   

15.
采用静电纺丝法制备还原氧化石墨烯(rGO)/SnO_2复合纳米纤维,研究了Ce掺杂及掺杂量对rGO/SnO_2纳米纤维的微结构与气敏性能的影响.利用扫描电子显微镜(SEM)、透射电子显微镜(TEM,带SAED)、X射线衍射仪(XRD)及拉曼光谱仪(Raman)对复合纳米纤维的结构与形貌进行表征.结果表明:不同含量Ce掺杂对复合纳米纤维的晶体结构和形貌均无明显影响.气敏测试结果表明:不同的Ce掺杂量均能改善rGO/SnO_2纳米纤维对H_2S的灵敏度,在Ce掺杂摩尔分数为3%时复合材料对H_2S具有最佳的气敏性能,在75℃时5μL/L H_2S气体的灵敏度高达300,同时选择性和响应恢复性能也均有显著提高.  相似文献   

16.
制备了块状的SiO气凝胶,把具有很好电致发光(EL)和光致发光(PL)性能的8-羟基喹啉铝渗入到气凝胶的纳米孔洞中。可见—紫外吸收光谱表明8-羟基喹啉铝在SiO气凝胶的纳米孔洞中发生了化学吸附,且吸附作用随着气凝胶密度的减小而增强;PL谱中8-羟基喹啉铝的光致发射谱峰从470nm移至450nm。  相似文献   

17.
以铝、正丁醇、乙酰乙酸乙酯(EtAC)为原料,采用溶胶-凝胶法和N2超临界干燥技术制备出轻质纳米介孔固体A l2O3气凝胶,并对其光致发光特性进行了研究.  相似文献   

18.
采用以花生油或硅油为油相形成油包SiO_2溶胶或在超临界CO_2中形成微乳液的乳液成球技术,结合CO_2超临界干燥制备出SiO_2气凝胶微球。先后用三甲基氯硅烷(TMCS)和3-氨丙基三羟基硅烷(KH-553)对微球进行内疏外亲改性,并采用吸水实验和接触角测试进行表征,最后将SiO_2气凝胶微球做成涂料,研究其隔热性能。结果表明:不同工艺制备的SiO_2气凝胶微球比表面积都较高,孔隙率均高达90%以上。以花生油或硅油为油相制备的SiO_2气凝胶微球具有良好的介孔结构,孔径主要为5~20 nm。而在超临界CO_2中形成微乳液制备的SiO_2气凝胶微球具有小孔和介孔结构,孔径主要为0.02~10 nm。超临界CO_2微乳液中制备的微球粒径相对分布较窄(0.02~8μm),比表面积高达1 059.4 m~2/g。经TMCS和KH-553先后改性的SiO_2气凝胶微球具备内疏外亲的性能。将所制备的SiO_2气凝胶微球做成涂料,热导率最低为0.02 W/(m·K),达到很好的隔热效果。  相似文献   

19.
气凝胶材料的研究进展   总被引:1,自引:0,他引:1  
气凝胶材料是一种由纳米粒子或聚合物分子链组成的具备三维纳米结构的多孔材料,具有低密度、高孔隙率、高孔体积和高比表面积等结构特点,显现出优异的光、热、声、电和力学等特性,在航空航天、石油化工、环境保护、建筑保温、能量储存与转化等领域具有广泛的应用价值。迄今为止,气凝胶的种类已由最初的SiO_2气凝胶发展到了具有特定功能的各类新型气凝胶,从而有效拓宽了气凝胶的应用范围。气凝胶材料通常采用溶胶-凝胶、老化、溶剂置换并结合超临界干燥、冷冻干燥或常压干燥等过程制备。气凝胶材料按照组成可以分为单组分气凝胶和多组分气凝胶,其中单组分气凝胶主要包括氧化物气凝胶、碳化物气凝胶、氮化物气凝胶、石墨烯气凝胶(GA)、量子点气凝胶、聚合物基有机气凝胶、生物质基有机及C气凝胶和其他种类气凝胶,而多组分气凝胶由两种及以上单组分气凝胶构成或者由纤维、晶须、纳米管等作为增强体所形成的气凝胶复合材料。本文主要介绍各类单组分及其复合气凝胶材料的制备方法及其在隔热、吸附、催化、储能转化和生物医用等领域的应用,对近年来气凝胶在制备及应用方面所取得的突破性进展进行了综述。同时也指出在基础研究方面亟需通过理论计算和实验研究相结合,实现气凝胶网络结构生长调控、表面组成及化学结构调控和高温组织结构稳定性调控;在功能型气凝胶材料开发方面,通过反应机制深入研究气凝胶材料结构和性能关联,实现高性能的多功能型气凝胶材料突破性进展;在规模化应用方面,寻找成本低廉的前驱体原料和降低气凝胶干燥成本是气凝胶产业化进程长远发展的关键。  相似文献   

20.
以钨粉和正硅酸乙酯为原料 ,采用溶胶凝胶技术和旋转镀膜方法 ,在玻璃衬底上制备出了气致变色WO3 SiO2 纳米复合薄膜 .采用椭偏仪、场发射扫描电子显微镜 (FE SEM )、红外光谱仪以及可见光分光光度计等对不同温度热处理的WO3 SiO2 复合薄膜及WO3 薄膜的特性进行了分析 .研究结果表明 :掺杂SiO2 会使WO3 薄膜厚度增大 ,折射率下降 ,表面平整度降低 ,颗粒尺寸增大 ;经高温热处理的WO3 SiO2 复合薄膜具有良好的气致变色能力  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号