首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
为降低传统双极结型晶体管(Bipolar Junction Transistor, BJT)型带隙基准源温度系数高的问题,提出了一种带有高阶曲率补偿的带隙基准电压源,极大降低了带隙基准源的温度系数.设计基于传统BJT型带隙基准电路,采用高阶曲率补偿电路对温度系数进行优化,并采用折叠式cascode运算放大器和自偏置cascode电流镜对输入电压范围进行优化.设计的带隙基准源具有低温度系数、高电源电压抑制比、结构简单的优点,是各类片上系统的优良选择.  相似文献   

2.
介绍了带隙基准电压源的原理,实现了一种高精度的带隙基准电压源电路.基于CSMC0.6 um用cadence的spectre工具仿真,温度从-40 ℃到125 ℃变化时,温度系数为1.947 ppm/℃,电源电压在3 V~6 V变化时,电源抑制比为97.68 db.  相似文献   

3.
随着片上系统的发展,带隙基准源精度和功耗的要求也越来越高.目前的高阶温度补偿方法在工艺兼容、设计复杂度和功耗上还存在一定的局限性.本文推导了一个新颖的电流模带隙基准电路在饱和区工作时的温度特性,并结合双带隙结构在输出支路上采用电流比例相减的方式实现有效的曲率补偿,从而实现了一个新颖的双带隙结构CMOS带隙基准源.在GSMC 0.18μm工艺下,设计的CMOS带隙基准源版图面积为0.066mm~2.蒙特卡罗后仿真的结果表明,在-40~125℃温度范围内平均温度系数为14.27ppm/℃;在27℃时基准电压平均值为1.201V,标准偏差变化仅为33.813mV(2.82%);在3.3V工作电压下,静态电流平均为9.865μA,电源抑制为-37.21dB.本文设计的带隙基准源具有高精度、低功耗、结构简单的特点,是片上系统的良好选择.  相似文献   

4.
文章设计了一种应用于D/A转换器芯片中的带隙基准电压电路,在3 V工作电压下具有极低的温度系数,输出电压低于传统带隙基准电路.该电路改进了传统带隙基准电路,减小了运放失调和电路误差,通过电阻二次分压降低了基准输出电压.在SMIC 0.35 μm CMOS工艺下,使用Hspice进行了仿真.仿真结果表明:该基准的温度系数在-40~100 ℃的范围内仅为3.6×10-6 /℃;电源电压在2.7~3.3 V之间变化时,电源抑制比为52 dB.该文设计的带隙基准电压源完全符合设计要求,是一个性能良好的基准电路.  相似文献   

5.
低温度系数高电源抑制比带隙基准源的设计   总被引:1,自引:0,他引:1  
基于SMIC 0.18 μm CMOS工艺,设计了一种适用于数模或模数转换等模数混合电路的低温度系数、高电源抑制比的带隙基准电压源.针对传统带隙基准源工作电压的限制,设计采用电流模结构使之可工作于低电源电压,且输出基准电压可调;采用共源共栅结构(cascode)作电流源,提高电路的电源抑制比(PSRR);采用了具有高增益高输出摆幅的常见的两级运放.Cadence仿真结果表明:在1.8V电源电压下,输出基准电压约为534 mV,温度在-25~100℃范围内变化时,温度系数为4.8 ppm/℃,低频电源抑制比为-84 dB,在1.6~2.0 V电源电压变化范围内,电压调整率为0.15 mV/V.  相似文献   

6.
高精度的2.5V基准电压对数字电压表、电源系统以及运算放大器有着重要的作用。在分析比较各种基准电压源性能的前提下,最终选择了以基于PTAT(与绝对温度成正比)改进的带隙基准源电路作为设计的基础。采用了电源电压分配电路实现基准电压源的在较宽的电源范围内能输出高精度的基准电压,增加了输出驱动级电路保证电压基准源有大的负载能力,优化了启动电路、温度保护电路、过流和过压保护电路,保证该电路稳定可靠的工作。  相似文献   

7.
论文在分析传统带隙基准源的基础上,设计了低电压输出的带隙基准电压源电路.采用Charter 0.35μm标准CMOS工艺,并用Mentor Graphics公司的Eldo仿真器对带隙基准电压源电路的电源特性、温度特性进行了仿真.该带隙基准电压源的温度系数为19-ppm/℃,在室温下当电源电压2.0~3.0 V时,基准电压源输出电压为(915.4±0.15)mV,功耗小于0.2-mW.  相似文献   

8.
设计了一种采用前调整器的高电源抑制比的CMOS带隙基准电压源.基于CSMC 0.5 μm标准CMOS工艺,分别对有前调整器与没有前调整器的CMOS带隙基准电压源进行了设计与仿真验证.仿真结果显示,采用前调整器的带隙基准在100 Hz、1 kHz、100 kHz处分别获得了-117.3 dB、-106.2 dB、-66.2 dB的高电源抑制比,而没有采用前调整器的CMOS带隙基准在100 Hz、1 kHz、100 kHz处仅分别获得了-81.8、-80.1、-44.9 dB的电源抑制比;在-15 ~90℃范围内,采用前调整器的带隙基准的温度系数为6.39 ppm/℃;当电源电压在2.2 ~8 V变化时,采用调整器的带隙基准的输出电压变化仅9.73μV.  相似文献   

9.
设计了低温度系数、高电源抑制比BiCMOS带隙基准电压发生器电路.综合了带隙电压的双极型带隙基准电路和与电源电压无关的电流镜的优点.电流镜用作运放,它的输出作为驱动的同时还作为带隙基准电路的偏置电路.使用0.6μm双层多晶硅n-well BiCMOS工艺模型,利用Spectre工具对其仿真,结果显示当温度和电源电压变化范围分别为-45~85℃和4.5~5.5 V时,输出基准电压变化1 mV和0.6 mV;温度系数为16×10-6/℃;低频电源抑制比达到75 dB.电路在5 V电源电压下工作电流小于25μA.该电路适用于对精度要求高、温度系数低的锂离子电池充电器电路.  相似文献   

10.
《河南科学》2016,(4):486-490
设计了一款宽温度范围并带有密勒补偿的带隙电压基准电路,基准输出可通过内接电阻调节.该电压源以带隙基准电路为基本电路,扩展预偏置电路和输出缓冲电路.此电路基于0.35μm CMOS工艺,利用Cadence仿真工具进行验证,结果表明该带隙基准的输入电压为2.3~4 V,可以输出受温度变化影响较小的高精度电压,低频时的电源抑制比为84 d B,基于以上性能优点,该基准电路可以应用于温度较宽的集成电路设计中.  相似文献   

11.
一种新的CMOS带隙基准电压源设计   总被引:2,自引:0,他引:2  
设计了一种新的CMOS带隙基准电压源.通过采用差异电阻间温度系数的不同进行曲率补偿,利用运算放大器进行内部负反馈,设计出结构简单、低温漂、高电源抑制比的CMOS带隙基准电压源.仿真结果表明,在VDD=2 V时,电路具有4.5×10-6V/℃的温度特性和57 dB的直流电源抑制比,整个电路消耗电源电流仅为13μA.  相似文献   

12.
基于CSMC 0.5 μm CMOS工艺,采用CMOS技术,设计一种高性能的带隙基准电压源.带隙基准电压源输出电压经过电平转换电路,反馈回带隙基准电压源中的运算放大器,可以获得良好的电源特性和带负载能力.采用可修调电阻阵列,精确地控制温度系数.仿真结果表明:在5 V电源电压下,温度系数为8.28×10-6/℃,低频电源抑制比为83 dB.  相似文献   

13.
提出一种新型的芯片内基准电压源的设计方案,基准电压源是当代数模混合集成电路以及射频集成电路中极为重要的组成部分。为满足大规模低压CMOS集成电路中高精度比较器、数模转换器、高灵敏RF等电路对基准电压源的苛刻需要,芯片内部基准电压源大部分采用基准带隙电压源。研究并设计了一种低功耗、超低温度系数和较高的电源抑制比的高性能低压CMOS带隙基准电压源。其综合了一级温度补偿、电流反馈技术、偏置电路温度补偿技术、RC相位裕度补偿技术。该电路采用台积电(TSMC)0.18μm工艺,并利用Specture进行仿真,仿真结果表明了该设计方案的合理性以及可行性,适用于在低电压下电源抑制比较高的低功耗领域应用。  相似文献   

14.
基准电压源是在电路系统中为其他功能模块提供高精度的电压基准,或由其转化为高精度电流基准,为其它功能模块提供精确、稳定的偏置的电路.它是模拟集成电路和混合集成电路中非常重要的模块.基准源输出的基准信号稳定,与电源电压、温度以及工艺的变化无关.本文在研究带隙基准基本原理的基础上,使用Spectre进行仿真并给出了仿真结果.  相似文献   

15.
带隙基准电压源在同一工艺的不同工艺角下,基准源的输出电压会有很大的变化.为了减少工艺角变化的影响,引入数字修调技术,对影响带隙输出基准电压的电阻阻值进行修调,以保证不同工艺角下的电压基准值可以通过修调调回理想值.基于华虹NEC 0.35μm BCD工艺的仿真结果表明,修调后的带隙基准源在-40℃~85℃范围内,各工艺角下基准电压的温度系数均小于6 ppm/℃.  相似文献   

16.
提出了一种高精度带隙基准电压源,电路采用了与温度成正比的电压补偿二极管压降的负温度特性,得到了与温度无关的基准电压源,并且利用双二极管串联模式提高了带隙结构的精度,并给出了计算和分析.电路采用0.5μm BICMOS工艺实现,仿真的结果表明,在3.3 V电压下,电路的功耗为25μW,在温度-40-125℃范围内,输出的电压为1.239 V,温度系数为10 ppm/℃.  相似文献   

17.
高精度实用数模转换电路设计   总被引:2,自引:0,他引:2  
本文介绍了基于高精度12位D/A转换器DAC7512、单片机89C51和带隙基准源的实用型数模转换电路。通过一实际的应用电路讲述了电路的结构、原理及分析,并给出了一个具体的应用示例程序。该数模转换电路精度高、输出稳定、电路简单实用。  相似文献   

18.
采用CSMC 0.35μm工艺,通过在电源和带隙基准源电路间插入电流源缓冲级的方法,设计提高带隙基准源电源噪声抑制能力的带隙基准源.在最低工作电压不变的情况下,所设计的带隙基准电源大幅度提高了电路的电源抑制比,且功耗低.仿真结果表明:电源抑制比值为110dB/40dB,Iq=12μA,Vmin=2.4V,可作为模拟IP(知识产权)且易集成于单片系统中.  相似文献   

19.
针对传统CMOS温度传感器芯片精度低,功耗高和温度范围窄的问题,提出了一种采用电荷平衡模数转换器(ADC)的高精度CMOS温度传感器。为了避免使用高精度带隙基准源,传感器中基于寄生双极晶体管的温度感知电路分别产生与温度成正比和反比的两个电压,再用一个电荷平衡ADC对这两个电压交替量化,得到与实时温度对应的数字量;工艺波动引起的感知误差采用一个外置基准电压来校准;整个温度传感器电路采用0.18μm CMOS工艺设计。仿真结果表明:在-40~125℃的温度范围内,传感器的测量精度可达±0.2℃,完成一次测量的时间仅为42ms,工作电流为130μA,芯片版图面积为0.55mm~2。该温度传感器可应用在植入式医疗、射频标签和物联网等系统中实现对温度的高精度测量。  相似文献   

20.
针对集成电路高温下工作失效的问题,运用零温度系数栅偏置电压理论和漏电流补偿法,设计出一种电源电压为3.5~5.5V,室温190℃有效,温度系数为1.5×10-6 V/℃的高精度带隙基准电路.此带隙基准设计方法有别于常用的以精确匹配电阻和高阶反馈获得低温漂的方法,但同样具有宽电压、低温漂、工艺角稳定等性能,优点是能在高温条件下工作,解决了目前绝大多数带隙基准高精度有效工作温度不超过150℃的问题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号