首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Axis formation occurs in plants, as in animals, during early embryogenesis. However, the underlying mechanism is not known. Here we show that the first manifestation of the apical-basal axis in plants, the asymmetric division of the zygote, produces a basal cell that transports and an apical cell that responds to the signalling molecule auxin. This apical-basal auxin activity gradient triggers the specification of apical embryo structures and is actively maintained by a novel component of auxin efflux, PIN7, which is located apically in the basal cell. Later, the developmentally regulated reversal of PIN7 and onset of PIN1 polar localization reorganize the auxin gradient for specification of the basal root pole. An analysis of pin quadruple mutants identifies PIN-dependent transport as an essential part of the mechanism for embryo axis formation. Our results indicate how the establishment of cell polarity, polar auxin efflux and local auxin response result in apical-basal axis formation of the embryo, and thus determine the axiality of the adult plant.  相似文献   

2.
Lynch JA  Brent AE  Leaf DS  Pultz MA  Desplan C 《Nature》2006,439(7077):728-732
The Bicoid (Bcd) gradient in Drosophila has long been a model for the action of a morphogen in establishing embryonic polarity. However, it is now clear that bcd is a unique feature of higher Diptera. An evolutionarily ancient gene, orthodenticle (otd), has a bcd-like role in the beetle Tribolium. Unlike the Bcd gradient, which arises by diffusion of protein from an anteriorly localized messenger RNA, the Tribolium Otd gradient forms by translational repression of otd mRNA by a posteriorly localized factor. These differences in gradient formation are correlated with differences in modes of embryonic patterning. Drosophila uses long germ embryogenesis, where the embryo derives from the entire anterior-posterior axis, and all segments are patterned at the blastoderm stage, before gastrulation. In contrast, Tribolium undergoes short germ embryogenesis: the embryo arises from cells in the posterior of the egg, and only anterior segments are patterned at the blastoderm stage, with the remaining segments arising after gastrulation from a growth zone. Here we describe the role of otd in the long germband embryo of the wasp Nasonia vitripennis. We show that Nasonia otd maternal mRNA is localized at both poles of the embryo, and resulting protein gradients pattern both poles. Thus, localized Nasonia otd has two major roles that allow long germ development. It activates anterior targets at the anterior of the egg in a manner reminiscent of the Bcd gradient, and it is required for pre-gastrulation expression of posterior gap genes.  相似文献   

3.
A Zú?iga  A P Haramis  A P McMahon  R Zeller 《Nature》1999,401(6753):598-602
Outgrowth and patterning of the vertebrate limb are controlled by reciprocal interactions between the posterior mesenchyme (polarizing region) and a specialized ectodermal structure, the apical ectodermal ridge (AER). Sonic hedgehog (SHH) signalling by the polarizing region modulates fibroblast growth factor (FGF)4 signalling by the posterior AER, which in turn maintains the polarizing region (SHH/FGF4 feedback loop). Here we report that the secreted bone-morphogenetic-protein (BMP) antagonist Gremlin relays the SHH signal from the polarizing region to the AER. Mesenchymal Gremlin expression is lost in limb buds of mouse embryos homozygous for the limb deformity (Id) mutation, which disrupts establishment of the SHH/FGF4 feedback loop. Grafting Gremlin-expressing cells into ld mutant limb buds rescues Fgf4 expression and restores the SHH/FGF4 feedback loop. Analysis of Shh-null mutant embryos reveals that SHH signalling is required for maintenance of Gremlin and Formin (the gene disrupted by the ld mutations). In contrast, Formin, Gremlin and Fgf4 activation are independent of SHH signalling. This study uncovers the cascade by which the SHH signal is relayed from the posterior mesenchyme to the AER and establishes that Formin-dependent activation of the BMP antagonist Gremlin is sufficient to induce Fgf4 and establish the SHH/FGF4 feedback loop.  相似文献   

4.
Ashe HL  Levine M 《Nature》1999,398(6726):427-431
Extracellular gradients of signalling molecules can specify different thresholds of gene activity in development. A gradient of Decapentaplegic (Dpp) activity subdivides the dorsal ectoderm of the Drosophila embryo into amnioserosa and dorsal epidermis. The proteins Short gastrulation (Sog) and Tolloid (Tld) are required to shape this gradient. Sog has been proposed to form an inhibitory complex with either Dpp or the related ligand Screw, and is subsequently processed by the protease Tld. Paradoxically, Sog appears to be required for amnioserosa formation, which is specified by peak Dpp signalling activity. Here we show that the misexpression of sog using the even-skipped stripe-2 enhancer redistributes Dpp signalling in a mutant background in which dpp is expressed throughout the embryo. Dpp activity is diminished near the Sog stripe and peak Dpp signalling is detected far from this stripe. However, a tethered form of Sog suppresses local Dpp activity without augmenting Dpp activity at a distance, indicating that diffusion of Sog may be required for enhanced Dpp activity and consequent amnioserosa formation. The long-distance stimulation of Dpp activity by Sog requires Tld, whereas Sog-mediated inhibition of Dpp does not. The heterologous Dpp inhibitor Noggin inhibits Dpp signalling but fails to augment Dpp activity. These results suggest an unusual strategy for generating a gradient threshold of growth-factor activity, whereby Sog and its protease specify peak Dpp signalling far from a localized source of Sog.  相似文献   

5.
The acquisition of neural fate by embryonic ectodermal cells is a fundamental step in the formation of the vertebrate nervous system. Neural induction seems to involve signalling by fibroblast growth factors (FGFs) and attenuation of the activity of bone morphogenetic protein (BMP). But FGFs, either alone or in combination with BMP antagonists, are not sufficient to induce neural fate in prospective epidermal ectoderm of amniote embryos. These findings suggest that additional signals are involved in the specification of neural fate. Here we show that the state of Wnt signalling is a critical determinant of neural and epidermal fates in the chick embryo. Continual Wnt signalling blocks the response of epiblast cells to FGF signals, permitting the expression and signalling of BMP to direct an epidermal fate. Conversely, a lack of exposure of epiblast cells to Wnt signals permits FGFs to induce a neural fate.  相似文献   

6.
The study of planarian regeneration may help us to understand how we can rebuild organs and tissues after injury, disease or ageing. The robust regenerative abilities of planarians are based upon a population of totipotent stem cells (neoblasts), and among the organs regenerated by these animals is a well-organized central nervous system. In recent years, methodologies such as whole-mount in situ hybridizations and double-stranded RNA have been extended to planarians with the aim of unravelling the molecular basis of their regenerative capacities. Here we report the identification and characterization of nou-darake (ndk), a gene encoding a fibroblast growth factor receptor (FGFR)-like molecule specifically expressed in the head region of the planarian Dugesia japonica. Loss of function of ndk by RNA interference results in the induction of ectopic brain tissues throughout the body. This ectopic brain formation was suppressed by inhibition of two planarian FGFR homologues (FGFR1 and FGFR2). Additionally, ndk inhibits FGF signalling in Xenopus embryos. The data suggest that ndk may modulate FGF signalling in stem cells to restrict brain tissues to the head region of planarians.  相似文献   

7.
Hachet O  Ephrussi A 《Nature》2004,428(6986):959-963
  相似文献   

8.
Sun X  Mariani FV  Martin GR 《Nature》2002,418(6897):501-508
To determine the role of fibroblast growth factor (FGF) signalling from the apical ectodermal ridge (AER), we inactivated Fgf4 and Fgf8 in AER cells or their precursors at different stages of mouse limb development. We show that FGF4 and FGF8 regulate cell number in the nascent limb bud and are required for survival of cells located far from the AER. On the basis of the skeletal phenotypes observed, we conclude that these functions are essential to ensure that sufficient progenitor cells are available to form the normal complement of skeletal elements, and perhaps other limb tissues. In the complete absence of both FGF4 and FGF8 activities, limb development fails. We present a model to explain how the mutant phenotypes arise from FGF-mediated effects on limb bud size and cell survival.  相似文献   

9.
Wang X  Harris RE  Bayston LJ  Ashe HL 《Nature》2008,455(7209):72-77
Dorsal-ventral patterning in vertebrate and invertebrate embryos is mediated by a conserved system of secreted proteins that establishes a bone morphogenetic protein (BMP) gradient. Although the Drosophila embryonic Decapentaplegic (Dpp) gradient has served as a model to understand how morphogen gradients are established, no role for the extracellular matrix has been previously described. Here we show that type IV collagen extracellular matrix proteins bind Dpp and regulate its signalling in both the Drosophila embryo and ovary. We provide evidence that the interaction between Dpp and type IV collagen augments Dpp signalling in the embryo by promoting gradient formation, yet it restricts the signalling range in the ovary through sequestration of the Dpp ligand. Together, these results identify a critical function of type IV collagens in modulating Dpp in the extracellular space during Drosophila development. On the basis of our findings that human type IV collagen binds BMP4, we predict that this role of type IV collagens will be conserved.  相似文献   

10.
Thisse B  Wright CV  Thisse C 《Nature》2000,403(6768):425-428
Definition of cell fates along the dorso-ventral axis depends on an antagonistic relationship between ventralizing transforming growth factor-beta superfamily members, the bone morphogenetic proteins and factors secreted from the dorsal organizer, such as Noggin and Chordin. The extracellular binding of the last group to the bone morphogenetic proteins prevents them from activating their receptors, and the relative ventralizer:antagonist ratio is thought to specify different dorso-ventral cell fates. Here, by taking advantage of a non-genetic interference method using a specific competitive inhibitor, the Lefty-related gene product Antivin, we provide evidence that cell fate along the antero-posterior axis of the zebrafish embryo is controlled by the morphogenetic activity of another transforming growth factor-beta superfamily subgroup--the Activin and Nodal-related factors. Increasing antivin doses progressively deleted posterior fates within the ectoderm, eventually resulting in the removal of all fates except forebrain and eyes. In contrast, overexpression of activin or nodal-related factors converted ectoderm that was fated to be forebrain into more posterior ectodermal or mesendodermal fates. We propose that modulation of intercellular signalling by Antivin/Activin and Nodal-related factors provides a mechanism for the graded establishment of cell fates along the antero-posterior axis of the zebrafish embryo.  相似文献   

11.
Verheyden JM  Sun X 《Nature》2008,454(7204):638-641
During organ formation and regeneration a proper balance between promoting and restricting growth is critical to achieve stereotypical size. Limb bud outgrowth is driven by signals in a positive feedback loop involving fibroblast growth factor (Fgf) genes, sonic hedgehog (Shh) and Gremlin1 (Grem1). Precise termination of these signals is essential to restrict limb bud size. The current model predicts a sequence of signal termination consistent with that in chick limb buds. Our finding that the sequence in mouse limb buds is different led us to explore alternative mechanisms. Here we show, by analysing compound mouse mutants defective in genes comprising the positive loop, genetic evidence that FGF signalling can repress Grem1 expression, revealing a novel Fgf/Grem1 inhibitory loop. This repression occurs both in mouse and chick limb buds, and is dependent on high FGF activity. These data support a mechanism where the positive Fgf/Shh loop drives outgrowth and an increase in FGF signalling, which triggers the Fgf/Grem1 inhibitory loop. The inhibitory loop then operates to terminate outgrowth signals in the order observed in either mouse or chick limb buds. Our study unveils the concept of a self-promoting and self-terminating circuit that may be used to attain proper tissue size in a broad spectrum of developmental and regenerative settings.  相似文献   

12.
Agathon A  Thisse C  Thisse B 《Nature》2003,424(6947):448-452
Based on grafting experiments, Mangold and Spemann showed the dorsal blastopore lip of an amphibian gastrula to be able to induce a secondary body axis. The equivalent of this organizer region has been identified in different vertebrates including teleosts. However, whereas the graft can induce ectopic head and trunk, endogenous and ectopic axes fuse in the posterior part of the body, raising the question of whether a distinct organizer region is necessary for tail development. Here we reveal, by isochronic and heterochronic transplantation, the existence of a tail organizer deriving from the ventral margin of the zebrafish embryo, which is independent of the dorsal Spemann organizer. Loss-of-function experiments reveal that bone morphogenetic protein (BMP), Nodal and Wnt8 signalling pathways are required for tail development. Moreover, stimulation of naive cells by a combination of BMP, Nodal and Wnt8 mimics the tail-organizing activity of the ventral margin and induces surrounding tissues to become tail. In contrast to induction of the vertebrate head, known to result from the triple inhibition of BMP, Nodal and Wnt, here we show that induction of the tail results from the triple stimulation of BMP, Nodal and Wnt8 signalling pathways.  相似文献   

13.
Morphogen gradient interpretation.   总被引:20,自引:0,他引:20  
J B Gurdon  P Y Bourillot 《Nature》2001,413(6858):797-803
A morphogen gradient is an important concept in developmental biology, because it describes a mechanism by which the emission of a signal from one part of an embryo can determine the location, differentiation and fate of many surrounding cells. The value of this idea has been clear for over half a century, but only recently have experimental systems and methods of analysis progressed to the point where we begin to understand how a cell can sense and respond to tiny changes in minute concentrations of extracellular signalling factors.  相似文献   

14.
15.
Pellegrini L  Burke DF  von Delft F  Mulloy B  Blundell TL 《Nature》2000,407(6807):1029-1034
Fibroblast growth factors (FGFs) are a large family of structurally related proteins with a wide range of physiological and pathological activities. Signal transduction requires association of FGF with its receptor tyrosine kinase (FGFR) and heparan sulphate proteoglycan in a specific complex on the cell surface. Direct involvement of the heparan sulphate glycosaminoglycan polysaccharide in the molecular association between FGF and its receptor is essential for biological activity. Although crystal structures of binary complexes of FGF-heparin and FGF-FGFR have been described, the molecular architecture of the FGF signalling complex has not been elucidated. Here we report the crystal structure of the FGFR2 ectodomain in a dimeric form that is induced by simultaneous binding to FGF1 and a heparin decasaccharide. The complex is assembled around a central heparin molecule linking two FGF1 ligands into a dimer that bridges between two receptor chains. The asymmetric heparin binding involves contacts with both FGF1 molecules but only one receptor chain. The structure of the FGF1-FGFR2-heparin ternary complex provides a structural basis for the essential role of heparan sulphate in FGF signalling.  相似文献   

16.
17.
Attenuation of FGF signalling in mouse beta-cells leads to diabetes   总被引:5,自引:0,他引:5  
Hart AW  Baeza N  Apelqvist A  Edlund H 《Nature》2000,408(6814):864-868
Fibroblast growth factor (FGF) signalling has been implicated in patterning, proliferation and cell differentiation in many organs, including the developing pancreas. Here we show that the FGF receptors (FGFRs) 1 and 2, together with the ligands FGF1, FGF2, FGF4, FGF5, FGF7 and FGF10, are expressed in adult mouse beta-cells, indicating that FGF signalling may have a role in differentiated beta-cells. When we perturbed signalling by expressing dominant-negative forms of the receptors, FGFR1c and FGFR2b, in the pancreas, we found that that mice with attenuated FGFR1c signalling, but not those with reduced FGFR2b signalling, develop diabetes with age and exhibit a decreased number of beta-cells, impaired expression of glucose transporter 2 and increased proinsulin content in beta-cells owing to impaired expression of prohormone convertases 1/3 and 2. These defects are all characteristic of patients with type-2 diabetes. Mutations in the homeobox gene Ipf1/Pdx1 are linked to diabetes in both mouse and human. We also show that Ipf1/Pdx1 is required for the expression of FGFR1 signalling components in beta-cells, indicating that Ipf1/Pdx1 acts upstream of FGFR1 signalling in beta-cells to maintain proper glucose sensing, insulin processing and glucose homeostasis.  相似文献   

18.
19.
Dorsal-ventral patterning in vertebrate and Drosophila embryos requires a conserved system of extracellular proteins to generate a positional information gradient. The components involved include bone morphogenetic proteins (BMP/Dpp), a BMP antagonist (Chordin/Short gastrulation; Chd/Sog) and a secreted metalloproteinase (Xolloid/Tolloid) that cleaves Chd/Sog. Here we describe Xenopus Twisted gastrulation (xTsg), another member of this signalling pathway. xTsg is expressed ventrally as part of the BMP-4 synexpression group and encodes a secreted BMP-binding protein that is a BMP signalling agonist. The data suggest a molecular mechanism by which xTsg dislodges latent BMPs bound to Chordin BMP-binding fragments generated by Xolloid cleavage, providing a permissive signal that allows high BMP signalling in the embryo. Drosophila Tsg also binds BMPs and is expressed dorsally, supporting the proposal that the dorsal-ventral axis was inverted in the course of animal evolution.  相似文献   

20.
Peter IS  Davidson EH 《Nature》2011,474(7353):635-639
Specification of endoderm is the prerequisite for gut formation in the embryogenesis of bilaterian organisms. Modern lineage labelling studies have shown that in the sea urchin embryo model system, descendants of the veg1 and veg2 cell lineages produce the endoderm, and that the veg2 lineage also gives rise to mesodermal cell types. It is known that Wnt/β-catenin signalling is required for endoderm specification and Delta/Notch signalling is required for mesoderm specification. Some direct cis-regulatory targets of these signals have been found and various phenomenological patterns of gene expression have been observed in the pre-gastrular endomesoderm. However, no comprehensive, causal explanation of endoderm specification has been conceived for sea urchins, nor for any other deuterostome. Here we propose a model, on the basis of the underlying genomic control system, that provides such an explanation, built at several levels of biological organization. The hardwired core of the control system consists of the cis-regulatory apparatus of endodermal regulatory genes, which determine the relationship between the inputs to which these genes are exposed and their outputs. The architecture of the network circuitry controlling the dynamic process of endoderm specification then explains, at the system level, a sequence of developmental logic operations, which generate the biological process. The control system initiates non-interacting endodermal and mesodermal gene regulatory networks in veg2-derived cells and extinguishes the endodermal gene regulatory network in mesodermal precursors. It also generates a cross-regulatory network that specifies future anterior endoderm in veg2 descendants and institutes a distinct network specifying posterior endoderm in veg1-derived cells. The network model provides an explanatory framework that relates endoderm specification to the genomic regulatory code.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号