首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
对任意给定的矩阵A∈R^m×n,B∈n×s,C∈R^m×k,D∈R^k×s,E∈R^m×s,本文利用矩阵的拉直算子,Moore—Penrose(M—P)广义逆及Kronecker积,研究矩阵方程AXB+CYD=E的反对称最小二乘解,给出了解的表达式。并由此给出了该方程的反对称极小范数最小二乘解的表达式,同时给出了该方程有反对称解的充分必要条件及反对称解的表达式。  相似文献   

2.
利用广义自反矩阵和广义反自反矩阵的性质讨论了线性方程组AX=b和矩阵方程AX=B的最小二乘解问题.当A为广义自反矩阵或广义反自反矩阵时,可将线性方程组AX=b的最小二乘解问题化为两个较小独立的子问题;当A、B都是广义自反矩阵或广义反自反矩阵时,可将矩阵方程AX=B的最小二乘解问题化为线性方程组的最小二乘解问题,从而使这些问题的讨论得到简化.  相似文献   

3.
令R∈Cn×n为一个非平凡卷积矩阵,即R-1=R≠±I.若R*=-R, RAR=A,则矩阵A∈Cn×n称为反埃尔米特R对称矩阵.该文给出了反埃尔米特R对称矩阵的若干性质.首先,当R*=R时,得到了一个反埃尔米特R对称矩阵A的分解表达式.其次,证明了以反埃尔米特R对称矩阵为系数矩阵的方程组Az=w的求解,以及A的逆矩阵的求解均可归结为A的分解式的相应问题.最后,给出了反埃尔米特R对称矩阵A的特征值问题与其分解式对应的特征值问题之间的关系.  相似文献   

4.
设矩阵A=(aij)∈R^n×n,如果满足aij=aji=-an-j+1,n-i-4(i,j=1,2,…,n),则称A为对称次反对称矩阵,所有n阶对称次反对称矩阵的全体记为SASR^n×n .本文通过矩阵的广义奇异值分解,得到了线性流形上矩阵方程A^TXA=B存在对称次反对称解的充分必要条件,并且给出了解的表达式及其最佳逼近的条件.  相似文献   

5.
对于矩阵A∈□~(m×n),如果它的每一行元素之和等于零,且每一列元素之和也等于零,则称矩阵A为双中心矩阵.本文利用矩阵的列拉直算子、Moore-Penrose广义逆和一种矩阵向量积讨论n阶双中心矩阵特征值反问题的最小二乘解,得到了矩阵方程AX=X∧的双中心极小范数最小二乘解的表达形式.  相似文献   

6.
矩阵方程问题在结构设计、系统识别、振动理论等领域有着广泛的应用.对于任意给定的矩阵A∈Rm×n,B∈Rm×n,D∈Rm×m,本文利用奇异值分解和Kronecker积给出了矩阵方程AXAT+BYBT+AZBT=D的局部对称最小二乘解,并在一定条件下得出了方程的对称最小二乘解.  相似文献   

7.
令R∈Cm×m和S∈Cn×n是2个非平凡卷积矩阵,即R=R-1≠±Im,且S=S-1≠±In。如果一个矩阵A∈Cm×n满足RAS=A,则矩阵A称为(R,S)对称矩阵。本文首先分别给出了左右逆特征值问题的(R,S)对称矩阵解的可解条件和一般表达式;然后,给出了左右逆特征值问题相应的最佳逼近问题的(R,S)对称矩阵解。  相似文献   

8.
由于计算机计算时会出现舍入误差和舍位误差,因此用计算机解线性方程组Ax=b(A∈Cn×n,b∈Cn)时就不可避免地会有计算误差,本文借助矩阵范数和向量范数的概念,结合矩阵幂级数的有关结论,给出了线性方程组Ax=b(A∈Cn×n,b∈Cn)解的绝对误差和相对误差的四个上界.  相似文献   

9.
给出矩阵方程AX=B存在三对角中心对称解的充分必要条件,并且给出AX=B的特殊最小二乘解,即对任意给定A,B∈Rm×n,寻求三对角中心对称矩阵X(X∈Rn×n),使得‖AX-B‖最小.  相似文献   

10.
给定对称正交矩阵P,利用矩阵的标准相关分解,研究了矩阵方程AXAT=B的对称反自反最小二乘解,得到了最小二乘解的一般表达式。  相似文献   

11.
给定对称正交矩阵P,利用矩阵的标准相关分解,研究了矩阵方程AXA^T=B的对称反自反最小二乘解,得到了最小二乘解的一般表达式。  相似文献   

12.
对于给定的A∈Ct×m,B∈Ct×n,C∈Cp×m,D∈Cn×q,E∈Cp×q,通过奇异值分解和广义奇异值分解,我们得到了AX=B,XCD=E有广义自反解的充要条件,给出了一般解的表达式,在此基础上我们给出了最佳逼近解的表达式。  相似文献   

13.
研究矩阵方程组(AX=B, XC=D)的Hermitian反自反(反Hermitian反自反)最小二乘解. 利用分块矩阵和Hermitian反自反(反Hermitian反自反)矩阵的性质, 得到了解的一般表达式, 并研究了与其相关的任意给定矩阵的最佳逼近问题.  相似文献   

14.
设 J=[-0In I0n]In是n阶单位辛矩阵,若A∈C2n×2n满足AHA=I2n,AHJA=J,则称A为辛酉矩阵,所有2n阶辛酉阵的全体记为SUC2n×2n.令S={A∈SUC2n×2n|‖AY-Z‖=min,Y, Z∈C2n×p},本文考虑如下问题:问题Ⅰ给定X,B∈C2n×m,求A∈S使f(A)=‖AX-B‖=min.问题Ⅱ给定~A∈C22n×2n,求~A∈SE使得‖~A-~A‖=infA∈SE‖~A-A‖,其中SE是问题Ⅰ的解集合.本文给出了解集SE的通式及逼近解~A的表示式和一些有关的结果,并给出了相应的数值算法.  相似文献   

15.
给定矩阵P∈C~(n×n)且P~*=-P=P~(k+1).考虑了矩阵方程AX=B存在斜Hermite{P,k+1}(斜)Hamilton解的充要条件,并给出了解的表达式.进一步,对于任意给定的矩阵∈C~(n×n),给出了使得Frobenius范数‖-‖取得最小值的最佳逼近解∈C~(n×n).当矩阵方程AX=B不相容时,给出了斜Hermite{P,k+1}(斜)Hamilton最小二乘解,在此条件下,给出了对于任意给定矩阵的最佳逼近解.最后给出一些数值实例.  相似文献   

16.
设F是任意一个域,A∈Fn×n,称{X∈Fn×n|AX=XA)为A在Fn×n里的中心化子,记为C(A),它是F上的一个代数.运用矩阵的有理标准形,纯粹通过有理方法求出C(A)在F上的一组基及维数.  相似文献   

17.
<正>设A=(ajk)(n×n)为n阶复矩阵(本文记为A∈Cn×n,记oj=sum from k=1 k≠j to n |ajk|,j=1,...,n若|ajj|>aj,j=1,…,n,则称a为(按行)严格对角占优矩阵.若(?)=1/2(A+Ax)为严格对角占优矩阵,则称A为共轭(严格)对角占优矩阵.关于各类对角占优矩阵特征值的分布,已在文  相似文献   

18.
主要讨论反对称正交反对称矩阵的反问题的最小二乘解.首先,在反对称正交反对称矩阵的集合范围内求出了矩阵方程AX=B的最小二乘解;其次,求出其中与给定矩阵的最佳逼近解;最后给出了求解此类问题的算法和例子.  相似文献   

19.
给出了X=Ad,w是秩方程rankWAW BC X=rank(WAW)的解的充要条件,其中A∈Cm×n,W∈Cn×m,Ad,w是矩阵A的加权Drazin逆,并推广了文献[2]中的结论。  相似文献   

20.
设P是一个域,Г是满足{aEij︱i,j=2,…,n,a∈P}ГMn(P)的一个乘法半群,其中Mn(P)定义P上所有n×n矩阵组成的乘法半群。本文证明了一个结果:若f:Г→Mn(P)是一个保迹反乘法映射,则存在可逆矩阵S∈Mn(P),使得f(A)=SATS-1,A∈Г。由此刻画了Г的保迹反乘法映射。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号