首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
本研究在分析旋转坐标系下双馈异步发电机(DFIG)数学模型的基础上,采用定子磁链定向方式,推导空载并网控制和DFIG矢量控制策略, 通过DFIG功率控制实现最大风能追踪.在Matlab/Simulink环境下,构建整个交流励磁风力发电系统的仿真模型,并进行空载并网、发电机有功、无功功率独立调节、最大风能捕获运行的仿真研究.仿真结果验证了矢量控制方案的有效性.  相似文献   

2.
为了最大限度地利用风能,提高风力发电系统的效率,在分析变速恒频风力发电系统最大风能捕获原理的基础上,研究了一种不需要检测风速的最大风能捕获功率控制策略.这种控制策略既可以实现双馈发电机系统低于额定风速下的最大风能捕获控制又可以实现变速恒频双馈风力发电机的有功、无功功率的前馈解耦控制.最后,利用Matlab/Simulink对不同风速下双馈发电机系统的运行性能进行了分析和比较,结果验证了该控制策略的正确性和可行性.  相似文献   

3.
变速恒频双馈风力发电系统空载并网积分变结构控制   总被引:4,自引:0,他引:4  
围绕变速恒频双馈风力发电系统空载并网问题,将滑模变结构控制与矢量控制相结合,提出了一种基于指数趋近率的积分变结构控制策略,并分别对理想情况、电机参数摄动情况和电网电压波动情况下的双馈风力发电系统空载并网过程进行仿真分析.结果表明:在本控制策略下,双馈风力发电系统空载并网动态响应良好,稳态误差近似为零,过渡平稳,并网后无需更改控制器参数即可顺利进入最大风能追踪阶段;与传统PI控制相比,本控制策略能够有效抑制参数摄动及外部扰动对双馈风力发电系统的影响,具有较强的全局鲁棒性.  相似文献   

4.
针对永磁同步风力发电系统,从空气动力学的基础理论入手,分析了机组运行时的最大风能追踪原理.根据已知的风力机特性和滑模变结构系统理论,推导出在切换面上的等效控制和切换面上滑模运动的状态方程.为了削弱抖振,采用基于最大风能追踪控制的模糊滑模控制方法,根据系统状态在线调整切换控制增益系数.通过Lyapunov稳定性定理得到系统渐进稳定的充分条件.构建系统模型并进行仿真比较,仿真运行结果证实了该控制策略的正确性和有效性.  相似文献   

5.
变速恒频双馈风力发电机组控制技术研究   总被引:1,自引:0,他引:1  
该文分析了变速恒频双馈风力发电系统的运行区域,并针对高低风速区采取不同的控制策略,实现低风速区最大风能追踪和高风速区的额定功率保持。  相似文献   

6.
交流励磁变速恒频(VSCF)风力发电时,常使用电网电压定向矢量控制技术来实现双馈电机(DFIG)输出有功、无功功率的解耦控制,从而完成最大风能跟踪.然而研究发现,在实行最大风能跟踪时,发电系统向电网输送的净电能并非最多.提出一种以向电网输送净电能最多为目标的新的最大功率点跟踪控制策略.该控制策略在不检测风速情况下,能够自动寻找并跟随最大功率点,且不依赖风力机最佳功率特性曲线,提高了发电系统的运行效率,具有良好的动、静态性能和鲁棒性.仿真和实验结果证明了该控制策略的正确性与有效性.  相似文献   

7.
风力发电主要目的是尽可能的利用风能,针对变速恒频风力发电系统,分析了风力机特性及最大风能捕获原理.在额定风速以下通过调节发电机的转矩使转速跟随风速变化以获得最佳叶尖速比;在额定风速以上通过调整桨叶节距,保证额定功率输出而不越限.由于风速测量的准确性不高,以及风力发电系统的精确模型较难建立,采用传统的PID控制器难以在风速快速变化的情况下实现良好的控制效果.为了进一步提高风能的利用效率,文中研究了基于功率变化信息的双模糊控制策略,实现最大功率点跟踪和变速变桨控制.仿真结果表明,该控制策略能够提高风能捕获效率,较好地平滑风电机组输出功率.  相似文献   

8.
额定风速以下时,风能转换系统需要通过控制发电机转速使风能的捕获率最大.根据风速的多时间尺度特性,建立风能转换系统的非线性机理模型并得到其归一化误差的线性参数变化系统模型;在采用PI控制策略的基础上,设计了基于LPV模型的增益调度控制器,对风能转换系统的电磁转矩进行动态补偿.基于dSPACE的风能转换系统硬件在回路仿真平台进行实验分析,结果表明补偿后系统的功率系数和叶尖速比追踪其最优值的精度更高,鲁棒性更好,体现了更好的动态性能.  相似文献   

9.
风力发电系统是一个复杂的能量转换系统,有效地控制是系统安全、稳定运行的关键.针对永磁直驱风力发电系统(PMSG),机侧变流器采用功率外环、电流内环双闭环控制;网侧变流器采用电压外环、电流内环双闭环控制;最大功率点跟踪(MPPT)控制采用变步长爬山搜索法.建立了基于该控制策略的永磁直驱风力发电系统MATLAB仿真模型.仿真结果表明,采用该控制策略,系统能跟踪风能最大功率点安全、稳定运行,验证了该控制策略的有效性.  相似文献   

10.
为解决风力双馈电机在低风速及风速波动较大情况下转速暂态性能差、风能捕获效率低等问题,提出了一种面向双馈电机最大风能捕获的新型非线性积分滑模(NNISM)控制策略。设计了一种具有自饱和特性的新型非线性积分滑模控制器,其控制方法具有参数可调节、利用非线性势能函数规避积分超饱和效应等特点,以使整体系统具有更小的抖振;结合风力机风能利用系数和最大叶尖速比运算出风力双馈电机处于最佳叶尖速比下的最佳转速并输入至系统中,以使系统达到最大风能利用状态;构建了一套面向双馈电机最大风能捕获的新型非线性积分滑模控制系统,在组合风速变动情况下对NNISM控制器进行参数设定,以使系统于低速状态或风速波动较大情况下具有较好的动态性能。仿真结果表明,该新型非线性积分滑模最大风能捕获控制策略的控制性能不会在低速状态或风速波动较大情况时下降,具有转速超调量小、跟随速度快、鲁棒性能强等优点,可以完成最大风能捕获的控制目标,具有广泛的应用前景。  相似文献   

11.
为研究自吸泵叶轮气液混合能力对自吸性能的影响,在叶轮原模型基础上,设计了叶片不同进口边位置的5种模型方案.采用VOF多相流模型对不同方案全流域进行三维定常数值计算,研究对自吸性能的影响规律.针对350WFB-1200-50型外混式无密封自吸泵,初始条件设定进水S型弯管中含一定体积的空气段,出口处设置含气率监测点.结果表明:针对中高比转速叶轮,进口边沿后盖板位置向出口前掠,使得叶轮进口边工作时对流体分时加载,可以有效提升叶轮的气液混合能力,从而缩短自吸泵的自吸时间;在一定前掠角度范围内改变进口边位置对自吸泵的扬程和效率影响不大,但是当叶片进口边向出口位置前掠超过一定范围时,会导致自吸泵扬程明显下降;当叶轮进口边前掠10°时,额定工况下自吸时间缩短25%,自吸性能明显得到提高.  相似文献   

12.
作为二十世纪五六十年代国内最权威的诗歌刊物《,诗刊》无疑代表了当时的文学潮流,并引领着文学的走向。研究自1957年1月到1965年停刊的《诗刊》,可以清晰地把握当时的诗坛动态和文学环境,不失为五六十年代中国文学的一份生动史料。本文着重考察的是《诗刊》如何以对“五四”以来新诗人的重估和对新诗史的重构,完成了新诗在五六十年代的历史叙述。  相似文献   

13.
介绍了目前图书馆业务外包的外延和内涵,论述了业务外包之后的图书馆办馆效益,分析了业务外包带来的问题,对业务外包后的图书馆事业可持续发展进行了思考。  相似文献   

14.
医疗体育对大学生身高增长的影响   总被引:4,自引:0,他引:4  
19至24岁的大学生,随着内脏器官的不断完善,两次身高增长的高峰期已经过去,一但骨骺部位闭合,骨化,身高的增长就几乎停止。通过对815名学生样本数据的正态分析和对中外多项增高实例研究,对比,得出大学生群体中身材矮小及伴随相关心问题的人,通过有针对性的体疗锻炼,能使其形体和心理都得到有效的改善。对大学生身体发育抢救阶段,医疗体育(体疗)方案,运动处方,增高器械等方面的深入探索,对培养高素质人才具有深远的意义。  相似文献   

15.
利用极大值原理证明了对于Rn 中凸域Ω在狄利克莱边界条件下拉普拉斯算子的第一、第二特征值之差成立 :λ2 -λ1≥ π2d2 ,其中d为Ω的直径  相似文献   

16.
阐述了湿度传感器稳定性的误差,指出影响湿度传感器稳定性的误差有线性误差、温度影响误差、湿滞误差以及校验标准误差等.  相似文献   

17.
罗兰.巴特的著名论文《作者之死》文字不多,但其思想来源却十分复杂:哲学界反理性思想尤其是福柯的"人之死"理论、索绪尔的结构语言学理论和拉康的主体观、法国当时的社会现实等都为"作者之死"理论的提出准备了条件。和福柯、拉康在哲学界高倡"人之死"、"主体死了"相呼应,巴特把矛头指向权力结构在文学批评领域的体现者——作者身上。他宣布了"作者之死",在话语领域中争取实现自己的乌托邦理想。  相似文献   

18.
会计信息失真问题,是一个长期存在的现实问题。会计信息失真已经对我国国民经济的发展造成了极大的损害。从认识误区的角度对公司会计信息失真的原因进行了理性的思考,探讨了解决的对策。  相似文献   

19.
技术异化的生成   总被引:3,自引:0,他引:3  
从技术的复杂性和局限性、技术的不恰当使用、自然的不可预见性、技术理性的沙文主义式扩展及社会文化等几个方面探讨了技术异化产生的根源。  相似文献   

20.
对图书馆读者满意度问题的思考   总被引:6,自引:0,他引:6  
分析了图书馆读者满意度的含义及衡量要素,论述了图书馆调查读者满意度的目的及方式,提出了图书馆提升读者满意度的策略。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号