首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
翼型在较大攻角下会发生失速,产生流动分离,这将直接影响翼型气动性能。对此,采取在雷诺数Re=1×106的条件下,在S809翼型前缘点附近不同位置处设置微小板,改变微小板的板长、振动振幅和频率,探究其对S809翼型气动性能的影响。结果表明:静止时,微小板的板长尺寸对控制效果影响显著,当位置和尺寸选取最优时,S809翼型在...  相似文献   

2.
风力机翼型挥舞摆振非定常气动特性分析   总被引:2,自引:0,他引:2  
参考实际运行状态下的风力机翼型,应用动网格并采用kω-SST湍流模型对NREL S809翼型在Re=1×106情况下的翼型振荡进行了数值模拟,同时分析了挥舞、摆振及二者耦合振动对风力机翼型气动性能的影响.结果表明:相同振幅和频率下,翼型挥舞比摆振引起的气动力波动大得多;翼型未达到失速时,翼型吸力面的流动分离可以使翼型获得额外的升力;挥舞的振幅或频率较大时,翼型会发生失速,且来流攻角越大,挥舞使得翼型更易发生失速;在挥舞-摆振耦合引起的翼型气动力变化中,挥舞起主导作用.  相似文献   

3.
为研究前缘磨损对翼型气动性能的影响,以风力机专用翼型S809为研究对象,采用SST k-ω湍流模型进行数值计算,研究不同前缘脱层深度对翼型流场和气动性能的影响.结果表明:前缘脱层改变了翼型形状,使得前缘流动变为台阶流动,造成后缘分离区变大、分离点前移.随着脱层深度和攻角的增大,吸力面前缘回流漩涡和后缘分离区由相互独立状态变为完全融合.同一攻角下,前缘脱层对前缘的压力系数影响较大.攻角小于3°时,前缘脱层对翼型的升、阻力系数影响较小,攻角大于3°后,随着脱层程度的加深,翼型的升力系数逐渐减小,阻力系数逐渐增大.相对于光滑翼型前缘脱层翼型升力损失率最高达55.08%,阻力增长率最大达150.48%.  相似文献   

4.
提出了一种在翼型前缘前设置微小平板来抑制翼型上流动分离的新方法, 并通过自主研发的计算软件UCFD 对微小平板的流动控制进行了数值模拟. 首先研究了在攻角一定的情况下微小平板的长度、安装角、相对翼型的安装位置等对抑制翼型上流动分离效果的影响; 然后, 采用正交优化方法, 以翼型最大升阻比为优化目标, 得到了该小平板最佳的长度、安装角和安装位置等. 研究结果表明, 微小平板的设置对抑制叶片上的流动分离具有显著效果.  相似文献   

5.
运用延迟脱体涡模拟(delayed detached eddy simulation,DDES)技术对NREL S809三维翼型在洁净空气环境中和在不同直径颗粒环境下进行了数值模拟,由此预测了风沙环境下颗粒对翼型绕流分离的影响.研究结果表明:当攻角为8°时,DDES捕捉到了翼型吸力面的涡脱落现象,并且颗粒的加入显著地改变了翼型吸力面的涡脱规律,使得尾涡范围扩大、耗散更快,然而随着颗粒直径的增大,尾涡也逐渐恢复到接近洁净空气时的状态;当攻角较小(6°)时,翼型表面没有发生流动分离,颗粒的加入对流场的影响很小;当攻角较大(12°)时,颗粒对翼型绕流的影响也很小;不同攻角下颗粒对翼型升力系数有不同程度的影响.分析不同攻角下颗粒对翼型表面流动分离的影响规律表明:S809翼型绕流情况受颗粒影响最严重的攻角在7°~10°.  相似文献   

6.
针对缝隙会对分离式尾缘襟翼翼型气动性能产生影响,以S809翼型为研究对象,建立了S809分离式尾缘襟翼模型及整体式襟翼模型,分离式尾缘襟翼模型主体与尾缘襟翼之间采用均匀缝隙结构,缝隙大小为弦长1‰.采用计算流体力学方法中k-ω湍流模型对10%弦长襟翼模型进行多攻角下的升阻力特性计算分析并比较,并对襟翼固定10°偏转角的模型周边流场流线及压力分布进行了分析比较.结果表明:缝隙使翼型升力降低,随着攻角的逐渐增大,缝隙对襟翼模型的影响逐渐减小,带1‰c隙的分离式襟翼模型与整体式尾缘襟翼模型的压力分布曲线及压力云图基本一致,前者升力系数比后者最大低1%.缝隙对翼型气动性能的影响很小,在气动性能分析时可以忽略不计.  相似文献   

7.
基于NREL S809翼型,研究尾翼摆角对于翼型气动性能的影响.通过对比升阻力系数的模拟值与实验值,排除了网格质量对翼型气动性能的影响,验证了利用S-A(Spalart-Allmaras)湍流模型对风力机翼型进行计算的有效性,确定了合理的模拟方案,分析了翼型的气动性能.在此基础上,将S809翼型进行了尾缘变形,生成S809上摆-5°、下摆5°、10°及15°这4种变形翼型.再利用CFD(computational fluid dynamics)软件对它们进行数值计算,分析了各个翼型升阻力系数及流场特性.研究表明,随着尾缘下摆角度的增加,变形翼型上下表面压差逐渐增大,下摆翼型在升阻力特性方面有较大改善.但随着翼型下摆角度的增大,翼型产生分离涡的攻角却随之减小,更易失速.而上摆翼型升阻力特性及失速特性均不如原始翼型.  相似文献   

8.
为了研究大攻角下振荡射流控制翼型流动分离的机理,应用基于有限体积法和压力修正的SIMPLEC算法,数值模拟了表面施加振荡射流的翼型分离流动。结果表明振荡射流在给定条件下能够显著改善翼型的气动性能,提高翼型的升力系数,升力增幅高达18%。对振荡射流增升的流动机理分析表明,增升的机理是因为振荡射流产生的小扰动完全改变了翼型在大攻角粘性流动时产生的涡列结构,并且在翼型头部产生了非定常的分离涡。  相似文献   

9.
为更好地控制叶栅流动分离,提出一种在叶栅内部设置分流叶片的流动控制方法.采用数值模拟方法对比在不同攻角下有无分流叶片对叶栅性能及流动损失的影响,结果表明:分流叶片在大攻角条件下,更能提高叶栅的气动性能;选取攻角为11.7°,设计具有不同位置分流叶片的平面叶栅,对比分析发现分流叶片能够提高叶栅的做功能力.分流叶片轴向位置与周向位置存在最优组合,当分流叶片在周向与大叶片吸力面距离为28%弦长时,叶栅气动性能最佳,距离增大或减小均会恶化叶栅性能;轴向位置上,当分流叶片位于大叶片前缘处时,能够抑制尾缘边界层分离,减少流动损失.  相似文献   

10.
通过采用计算流体力学方法对不同相对厚度的椭圆翼型在低雷诺数范围下进行了数值模拟,研究了椭圆翼型在低雷诺数下的层流分离现象及流场结构.结果表明:在低雷诺数下,薄椭圆翼型在小攻角时前缘出现层流分离泡是其具有高的升力系数及升阻比的原因,随厚度的增加,前缘层流分离泡逐渐消失,在后缘形成时均小泡.随着雷诺数升高,薄椭圆翼型时均分离泡都出现在前缘,但外形缩小,而在较低雷诺数下,薄椭圆翼型小攻角时没有发生转捩再附现象;同时层流分离泡的出现也对翼型后缘分离涡的尺寸和位置产生了重要影响.相对厚度和雷诺数通过影响椭圆翼型上表面层流分离泡的尺寸、位置以及后缘分离涡的形态结构,进而改变了气动特性.  相似文献   

11.
《河南科学》2022,(1):25-32
为了研究柔性翼型在动态失速下的气动性能及其优势,从流动控制的角度,采用流固耦合数值模拟方法研究了具有被动大变形能力的柔性翼型动态失速特性并与传统的刚性翼型进行了比较.首先,对柔性翼型在不同减缩频率下的气动特性进行了研究,得到了减缩频率对柔性翼型气动特性的影响规律,同时定量比较了刚性翼型和柔性翼型的升阻力系数随攻角、减缩频率的变化规律.其次,从俯仰震荡翼型的涡量场、流线以及结构响应等角度揭示了柔性翼型在动态失速现象中依旧具有良好气动特性的关键物理机制.研究结果表明,在高减缩频率下,柔性翼型具有低阻力的特征,气动性能显著优于刚性;柔性翼型的被动变形可以抑制翼型表面涡旋的生成从而优化气动特性.  相似文献   

12.
风力机叶片在大攻角条件下存在着严重的流动分离现象,降低风电机组的发电效率,文章采用计算流体力学方法研究开缝位置改变对风力机叶片性能的影响。研究结果表明:在一定攻角范围下,射流会改善流动状况,缩小涡旋结构影响区域;开缝位置位于分离点附近时,气动性能最好,随着射流位置后移,其控制效果减弱,即使射流位置位于回流区,仍可减弱回流区影响范围与强度;射流有利于提高叶片升力系数,改善大攻角下叶片气动性能及稳定性。  相似文献   

13.
为考察等离子体合成射流流动控制效果,在NACA0021二维机翼模型上安装单个等离子体合成射流,开展低速风洞试验。采用烟流显示技术,定性观察了不同攻角和加载电参数下等离子体合成射流对流动分离的控制效果,并使用PIV技术对流动控制效果进行了定量研究。实验结果表明,在一定频率范围内(80~240 Hz),频率增加会减弱射流流动控制能力;加载电压幅值的影响较小;在一定范围内提高占空比(5%~15%),可增强射流的流动控制能力;在一定攻角范围内(0~19°),烟流流动显示结果与PIV测量所得的规律相似,在小攻角下,等离子体合成射流使得翼型吸力面层流变为紊流;在大攻角下,射流则起到抑制流动分离的作用,随着攻角的增加,抑制流动分离的效果减弱。  相似文献   

14.
采用大涡模拟方法,研究在翼型不同位置添加脊状结构对翼型流场及气动性能的影响,讨论了添加脊状结构后翼型流场的流动特性和涡结构特性。研究发现:1)在α=6°攻角条件下,无论riblet-Q翼型模型或riblet-H翼型模型均可改善边界层分离情况,但riblet- H翼型模型表现出更好的控制效果。2)后段布置脊状结构能够有效推迟翼型边界层分离点,抑制边界层大涡形成,控制分离涡的发展和脱落。3)riblet-H翼型模型使翼型的升力系数增大,同时也使其阻力系数降低,升阻比较原翼型有了较大提高。  相似文献   

15.
采用大涡模拟方法,研究在翼型不同位置添加脊状结构对翼型流场及气动性能的影响。讨论了添加脊状结构后翼型流场的流动特性和涡结构特性。研究发现:(1)在α=6°攻角条件下,无论riblet-Q翼型模型或riblet-H翼型模型均可改善边界层分离情况,但riblet-H翼型模型表现出更好的控制效果;(2)后段布置脊状结构能够有效推迟翼型边界层分离点,抑制边界层大涡形成,控制分离涡的发展和脱落;(3)riblet-H翼型模型使翼型的升力系数增大,同时也使其阻力系数降低,升阻比较原翼型有了较大提高。  相似文献   

16.
风力机叶片翼型气动特性数值模拟   总被引:1,自引:0,他引:1  
为研究风力机转子叶片的翼型特征,通过Fluent软件对改进的NACA类风力机转子叶片翼型的绕流流动气动特性参数进行数值模拟分析.结果表明:对于改进的NACA类转子叶片,翼型特征的优化保留了叶片高升力,进一步降低了阻力,在多攻角范围内均获得了较好的升力系数和升阻比.当攻角较小时,叶片绕流流动即呈现较小的分离涡,随着攻角的上升,叶片正负压强差进一步增大,表面压力系数特征规律趋于稳定,尾部涡进一步扩大,表现出强烈的分离流动特性.翼型的优化设计可以直接提高风力机转子叶片的气动特征,进而提高风力机的工作性能.  相似文献   

17.
基于SST k-ω模型,分析了前缘添加辅助小翼后,在2°~22°攻角下对主翼S809翼型的气动特性的影响.结果表明,在小攻角2°~6°下,主翼的升力减小,阻力增加,但当攻角达到8°时,前缘辅助小翼使得主翼升力增加,阻力减小,升阻比增大.通过分析主翼在10°、14°、18°和22°大攻角下的流动分离规律和增升机理,表明前...  相似文献   

18.
为量化随机自然风速条件下风力机翼型气动特性不确定程度,以S809风力机翼型为研究对象,基于非嵌入式概率配置点法和Transition SST转捩方程,建立了低雷诺数风力机翼型气动特性随机数值分析模型,获得了自然风速条件下风力机翼型气动力确定性和不确定性成分比例,并揭示了风速大小和方向随机耦合作用对翼型流场结构、压力系数和摩阻分布及湍动能的影响及不确定传播机制.结果表明,随机风速风向对翼型升阻气动因子不确定度影响显著,在计算攻角范围内S809翼型升阻比3σ置信区间相对不确定度最大为±35.13%;随机风速风向耦合作用下翼型升阻比不确定度分别是单随机因素下的4.76倍和1.08倍;翼型对来流不确定性敏感区域为前缘,可以考虑在翼型前缘部分进行气动稳健性优化设计.  相似文献   

19.
通过节段模型风洞试验分析宽高比4.3流线型箱梁断面的涡激振动性能,基于数值模拟分析静止及振动断面周围的绕流结构,探讨流线型箱梁涡激振动机制。结果表明:+5°攻角时,宽高比4.3断面涡激振动竖向无量纲最大振幅为0.013 5,是+3°攻角的2.2倍。涡激振动机制为:气流在桥面板处分离后,产生一定尺寸的上部漩涡,随着漩涡沿桥面板运动,其尺寸不断增大,并在桥面板背风侧发生分离脱落,振动断面周围的上部漩涡更加完整,且存在5个尺寸相对较大的漩涡,而下部漩涡在背风侧风嘴下斜腹板处的尺寸与数量有一定程度的增加;振动幅值增大后,主梁尾流宽度增大,脉动强度有一定程度增强。研究结果可供流线型箱梁抗风设计参考。  相似文献   

20.
采用数值方法研究了低雷诺数下局部弹性翼型结构参数对翼型性能及流动结构的影响。建立了局部弹性结构的振动模型,采用具有双时间步长的任意拉格朗日-欧拉方法和基于特征线的算子分裂法对非定常流固耦合问题进行数值模拟,对不同的结构密度、弹性模量、阻尼下局部弹性翼型的升力以及结构振动的频率特性进行了分析。研究结果表明:局部弹性结构自激振动对流动的控制存在最佳的振动频率范围;在合适的结构参数下,如较小的结构弹性模量和结构阻尼,局部弹性结构能够产生较大振幅的自激振动,从而改变流动结构并提高翼型升力;对于具有高升力的局部弹性翼型,结构振动能够显著改变非定常流动分离模式,减小分离区域,达到抑制分离、提高翼型升力的效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号