共查询到19条相似文献,搜索用时 62 毫秒
1.
基于经典PRP(Polak-Ribière-Polyak)算法,设计一个具有充分下降性和信赖域性质的搜索方向,采用投影技术及经典单调线搜索,提出一种求解大规模非线性单调方程组的修正共轭梯度算法.在常规条件下,新算法具有全局收敛性.初步的数值实验结果表明:新算法比经典PRP算法和3项PRP算法效率更优,鲁棒性更好,适合求解大规模非线性单调方程组. 相似文献
2.
基于共轭梯度算法的简洁性和高效性,本文提出求解大规模非线性方程组模型的一种修正三项共轭梯度算法。算法具有充分下降性、信赖域性质和全局收敛性。数值结果表明新算法比类似算法更具竞争力。 相似文献
3.
为了克服其他算法复杂和存储量大等缺点,基于经典的线搜索方法和超平面投影技术,设计了一种新型无导数的三项共轭梯度算法,用于求解大规模非线性单调方程组.算法的搜索方向满足充分下降性质,在一定假设条件下保证全局收敛性等优点.大规模的数值结果表明,算法求解效率比同类算法更快,具有更强的竞争性. 相似文献
4.
在求解非线性方程组问题的过程中,由已知的三项共轭梯度法的基础上设计出了一种新的共轭梯度法WW,并在适当条件下证明了其充分下降性及全局收敛性。数值实验结果表明,在与现有的一些共轭梯度法的对比中,WW方法有较强的竞争性。 相似文献
5.
提出一种结合非单调技术解非线性方程组的共轭梯度路径法.在合理的假设条件下,证明了算法的整体收敛性和局部超线性收敛速率,数值结果表明了算法的有效性. 相似文献
6.
设计一种针对大规模非线性方程组的修正DY共轭梯度算法.该算法的搜索方向不仅自动满足充分下降条件,而且属于信赖域.在适当条件下,可以证明新算法是全局收敛的.初步的数值实验表明新算法可以有效求解大规模非线性方程组. 相似文献
7.
提出求解大规模非线性方程组的一种无导数共轭梯度法.算法的优点是计算中完全不需要用到方程组的雅可比矩阵.在适当的条件下,证明算法具有全局收敛性. 相似文献
8.
针对大规模非线性方程组求解问题,在Yuan研究成果的基础上提出修正的Liu-Storey共轭参数公式,并采用投影技术和一种新型线搜索构建了修正Liu-Storey投影共轭梯度算法.新算法保持了Yuan公式不依赖任何线搜索且具有充分下降性的性质,同时还具有信赖域性质,在常规条件下新算法具有全局收敛性.初步的数值试验表明,新算法总体上比传统的LS算法和3项LS算法更优. 相似文献
9.
对求解凸约束大规模非线性方程组问题和信号恢复问题,设计出一个新的三项共轭梯度方向。新算法的搜索方向具有充分下降性与信赖域特性,在较弱的假设下,具有全局收敛性质。数值试验表明,新算法是有效的,并成功地应用于稀疏信号重建问题。 相似文献
10.
设计了一个新的含参数的共轭梯度公式,此公式自动拥有充分下降性质,在适当条件下,新算法在WWP线搜索下全局收敛.数值实验结果表明新算法是有效的,适用于无约束优化问题的求解. 相似文献
11.
基于Dai-Yuan共轭梯度法,本文给出了求解无约束优化的一个非线性共轭梯度法.对任意的线性搜索,该方法满足充分下降条件gTkdk≤-(1-1/4μ)‖gk‖2,μ1/4;而且,对一般的非线性函数,不需限制的下限值,用Wolf线搜索具有全局收敛性. 相似文献
12.
首先基于共轭梯度法的共轭条件和下降性,提出了一类充分下降的谱共轭梯度法.该方法将经典共轭梯度法中搜索方向由原来的只满足一个共轭条件改变为同时满足一个共轭条件和一个下降条件;然后,在Wolfe线搜索下用反证法证明了新算法的全局收敛性;最后,通过12个算例,将新算法和已有SHS算法在迭代次数和计算时间方面进行了数值比较实验,比较结果表明新算法在这两个方面都明显优越于SHS算法.算法的全局收敛性和数值结果的优越性表明,新算法是一个值得研究的方法. 相似文献
13.
在双参数共轭梯度法的基础上,给出一类具有充分下降性的共轭梯度法簇,证明了相应的方法在非单调线搜索及弱Wolfe线搜索下对非凸目标函数全局收敛,并用数值实验表明该方法具有良好的数值结果. 相似文献
14.
谢丽 《重庆工商大学学报(自然科学版)》2020,37(1):49-53
针对无约束优化问题,利用两项共轭梯度法(DL方法)去逼近改进的HS三项共轭梯度法,提出了改进的DL共轭梯度法即MDL共轭梯度法.该方法相对于DL方法具有一个更好的性质,即该共轭梯度法的搜索方向不依赖任何线搜索就可满足充分下降条件,理论上证明了该方法在Wolfe线搜索条件下对一般函数具有全局收敛性. 相似文献
15.
应用Powell对称化技术于Polak-Ribiere-Polyak共轭梯度法,提出了一种下降对称的Polak-Ribiere-Polyak共轭梯度法.对任意线性搜索,它都满足下降性质.在强Wolfe线搜索的条件下,利用矩阵的谱分析和Zoutendijk条件,证明了此算法的全局收敛性.最后,通过数值实验并且与Polak-Ribiere+(PR+)算法作比较,验证了该算法的性能和有效性与实用性. 相似文献
16.
对无约束优化问题提出两类新的充分下降共轭梯度法. 在每次迭代过程中, 算法均可得到充分下降方向. 在适当条件下, 证明了算法的全局收敛性. 数值结果表明算法可行、 有效. 相似文献
17.
张莉林 《重庆工商大学学报(自然科学版)》2017,34(6):38-41
基于DL共轭梯度方法,提出了一类修正的DL方法来解决无约束优化问题.该方法相对于DL共轭梯度方法具有一个更好的性质,即在强Wolfe线搜索条件下搜索方向具有充分下降性;证明了该方法在强Wolfe线搜索条件具有全局收敛性. 相似文献
18.
针对无约束优化问题, 提出一种新的混合杂交共轭梯度法, 该方法在不采用Wolfe搜索的条件下, 保证了算法的全局收敛性, 并在每次迭代过程中,
均可得到初始的自适应步长和充分下降方向. 数值结果表明, 该算法可行、 有效. 相似文献
均可得到初始的自适应步长和充分下降方向. 数值结果表明, 该算法可行、 有效. 相似文献
19.
给出一个新的解非线性对称方程组:g(x)=0(x∈R^n,g:R^n→R^n连续可微,并且其雅克比矩阵g(x)在x∈R^n上对称)的非单调共轭梯度方法,分析新方法的全局收敛性,并用数值实验来检验其有效性.新方法全局收敛,在不执行任意线搜索的条件下能够确保搜索方向的下降性,而且初始点的选择与维数的增加并不明显影响检验结果. 相似文献