共查询到20条相似文献,搜索用时 93 毫秒
1.
为解决医疗数据集中数据缺失对分类器的性能以及下游任务产生的不利影响,提出使用缺失森林插补法对医疗数据集中缺失值进行插补。该方法首先采用数据集中完整数据的观测值训练一个随机森林模型;利用训练好的随机森林模型预测缺失数据;不断重复迭代上述过程,从而完成数据缺失值补全。在两个医学数据集上进行测试,结果表明,根据NRMSE(Normalized Root Mean Squared Error)和PFC(the Proportion of Falsely Classified)评估指标,缺失森林插补法误差较低,插补效果优于K最近邻插补法、多重插补法和GAIN(Generative Adversarial Imputation Nets)插补法。同时,使用糖尿病数据集通过分析谷丙转氨酶(ALT:ALanine aminoTransferase)与糖尿病剂量反应关系证明了缺失森林插补法的稳定性。 相似文献
2.
溶解气氡浓度异常为可靠地震前兆,通过对历史观测数据进行建模,预测溶解气氡未来趋势,是快速检测溶解气氡浓度异常、研究震-氡机制的前提。溶解气氡浓度数据为典型的时间序列数据,传统的时间序列预测技术主要为自回归(AR)方法和自回归滑动平均(ARMA)方法。这些方法以线性方法为主,其拟合精度有限。采用目前最流行的深度学习技术长短期记忆(LSTM)模型对姑咱地震台、西昌地震台和雅安地震台一段时间内连续观测的溶解气氡日观测数据集溶解气氡浓度数据进行建模,采用90%的数据作为训练数据训练LSTM网络,10%的数据作为预测数据,采用均方根误差评价指标来评价模型的效果。在三种数据集上,LSTM的预测误差均方根误差均明显低于AR和ARMA方法。该结果表明,LSTM的预测精度高于传统的AR、ARMA方法。 相似文献
3.
刘宝慧 《甘肃联合大学学报(自然科学版)》2009,23(1)
利用无回答所提供的信息采用最小二乘估计给出了缺失数据情形下的目标变量的一种回归插补及其方差估计.在仅目标变量缺失数据情形,得A2中单元关于y对应的回归插补公式(y)i=(b)0+(b)1x12i+…+(b)pxp2i,i=1,…,r3.及其回归插补的协方差阵Cov((Y))=σ2X1(XTX)-1XT1.在辅助变量部分缺失且目标变量缺失的情形,得A2中单元关于y对应的回归插补公式(y)i=(b)0+(b)1x12i+…+(b)p1xp12i,i=1,…,r3.及其回归插补的协方差阵Cov((Y))=σ2X1(X*TX*)-1XT1. 相似文献
4.
统计调查表缺失数据插补效果的实证分析 总被引:1,自引:0,他引:1
针对统计调查表的实际数据,对其缺失数据进行了常用插补方法的实证分析.首先,实证分析了一维模型的局限性及缺点;其次,分别对决策树模型、神经网络模型、关联规则模型算法,在对输入(预测)变量进行系统优化基础上,统计插补的准确率,比较优劣;最后,提出了提高插补准确率的一个值得进一步研究的方向. 相似文献
5.
自动调制分类技术是无线通信技术中的一个重要研究领域,卷积神经网络以及长短期记忆网络(Long Short-Term Memory,LSTM)两种深度学习模型在基于特征的自动调制分类技术中得到了广泛的应用. 然而在实际应用中这两种模型都存在着一些问题,卷积神经网络模型在处理长时间依赖序列的分类任务时的准确率不佳,LSTM模型的时间性能会随着输入数据规模的增大显著下降. 针对以上问题,提出一种基于带有注意力机制的LSTM网络的调制识别算法. 首先,读取一定采样长度的信号原始数据,并通过长短期记忆网络提取信号特征;然后,利用注意力机制为学习到的特征分配权重以减少数据冗余;最后,分类器根据学习到的特征输出分类结果. 仿真实验结果表明,新算法能以较低的时间代价取得较高的准确率. 相似文献
6.
7.
8.
高慧勤 《长春工程学院学报(自然科学版)》2021,22(3)
插补控制是数控机床加工控制的核心技术,将智能优化算法和神经网络技术相结合,建立了PSOBP网络的插补控制模型。以坐标位置和速度为输入,下一点坐标位置、切线角、曲率半径为输出,搭建了BP网络模型,采用PSO优化算法对网络权值和阈值进行优化处理,最终获得PSO-BP插补控制模型。通过复杂加工曲线仿真试验分析,验证了PSO-BP网络数控系统插补控制的有效性。提出的数控系统插补控制能够提高复杂零件插补的精度和速度,对超精密零件加工的插补控制提供了一定的参考。 相似文献
9.
碳酸盐岩储层的储集空间类型多样、储层性质复杂,导致流体的测井响应受到强非均质性的影响,给流体识别工作带来极大困难.针对该问题,提出基于测井序列信息的双向长短期记忆网络(Bi-LSTM)流体识别模型,从测井响应特征差异性分析及相似性分析两方面出发,确定敏感曲线,结合Bi-LSTM网络的输入要求,建立流体识别样本库,并获得... 相似文献
10.
缺失值插补(missing value imputation,MVI)作为数据挖掘领域的重要研究分支,旨在为机器学习算法的训练提供高质量的数据支持。不同于现有的以算法性能提升为导向的MVI算法,为对大规模数据的缺失值进行有效插补,该文提出一种以数据结构还原为导向的数据分布一致MVI (distribution consistency-based MVI,DC-MVI)算法。首先,DC-MVI算法基于概率分布一致性原则构建了用于确定最优插补值的目标函数;其次,利用推导出的可行缺失值优化规则获取与原始完整值保持最大分布一致性且方差最为接近的插补值;最后,在分布式环境下,针对大数据的随机样本划分(random sample partition,RSP)数据块并行训练DC-MVI算法,获得大规模数据缺失值对应的插补值。实验结果表明:DC-MVI算法不仅能生成与原始完整值保持给定显著性水平下概率分布一致的插补值,还具有比另外5种经典的和3种最新的MVI算法更快的插补速度和更好的插补效果,进而证实DC-MVI算法是一种可行的大规模数据MVI算法。 相似文献
11.
针对传统的入侵检测方法无法有效提取网络流量数据特征的问题,提出了一种基于DSCNN-BiLSTM的入侵检测方法,该方法引入了深度可分离卷积代替标准卷积从而减少了模型参数,降低了计算量,并应用双向长短期记忆网络(BiLSTM)提取长距离依赖信息的特征,充分考虑了前后特征之间的影响.首先,通过主成分分析法(PCA)对网络流量数据进行特征降维,并创新性地将一维网络流量数据转化为三维图像数据;然后,分别运用深度可分离卷积神经网络(DSCNN)和双向长短期记忆网络(BiLSTM)提取网络流量数据的空间特征和时间特征;最后,利用KDDCUP99数据集进行训练、验证和测试.实验结果表明,与其他传统的入侵检测方法相比,该方法具有更高的准确率和更低的漏报率. 相似文献
12.
针对传统滑坡位移预测模型存在对历史数据遗忘的问题,提出了一种基于长短时记忆(LSTM)网络的滑坡位移动态预测模型。首先,将滑坡累计位移分解为趋势项位移与波动项位移,利用多项式拟合预测趋势项位移;然后,通过灰色关联度筛选外界诱发因子并运用LSTM模型预测波动项位移;最后,叠加周期项位移与波动项位移,得到累计位移。以新滩滑坡为例,并与RNN模型以及传统静态神经网络模型BP、ELM进行对比分析,采用平均百分比误差(MAPE),均方根误差(RMSE),拟合优度(R2)分别对其进行评价。应用结果表明:相比于传统静态模型,LSTM与RNN均适用于滑坡位移动态预测;对比结果显示,LSTM模型具有较好的预测精度,MAPE与RMSE值分别为1.026%、0.327 mm,拟合优度R2为0.978。 相似文献
13.
张欣襄 《首都师范大学学报(自然科学版)》1989,10(2):53-56
本文介绍了由APPLE—Ⅱ微机、程序控制磁盘及反应台3部分组成的,用于进行记忆品质参数测试的一套实验装置,来代替过去的人工或机械的测试方式,以提高测试时的精度和结果的准确。 相似文献
14.
针对目前情感分析中的循环神经网络模型缺乏对情感词的关注的问题,提出一种基于循环神经网络的情感词注意力模型,通过引入注意力机制,在情感分类时着重考虑文本中的情感词的影响.在NLPCC 2014情感分析数据集及IMDB影评数据集上进行试验,结果表明:该模型能够提高情感分析的效果. 相似文献
15.
神经网络短期负荷预测中的数据分析 总被引:2,自引:0,他引:2
在运用神经网络进行短期电力负荷预测中,输入数据的复杂性和冗余性给网络训练的效率和预测精度造成了显著的负面影响。文中提出了一种复全的数据分析方法,先采用输入变量贡献分析方法,根据输入变量对输出贡献的大小划分为主要变量和次要变量,在保留主要变量的基础 ,再采用多元统计分析中的主成分分析法,消除变量间的线性相关性,在此达到压缩变量维数的目的。将此分析方法用于处理神经网络的输入变量,提取其主要成分,使结构大为简化。结果表明,经该方法处理后的数据输入神经网络,训练时间大幅度缩短,负荷预测精度亦有一定程度的提高。 相似文献
16.
基于机器学习方法的暂态稳定评估已成为电力系统分析与控制领域的热点,由于实际系统中存在不能实现PMU的全面覆盖以及数据采集存在噪声的问题,使得传统机器学习方法的评估性能受到较大限制。针对此,构建了一种在PMU最优布点上的时间序列特征,提出了一种将改进卷积神经网络(ICNN)与双向长短时记忆网络(BiLSTM)进行融合的评估方法。该方法首先利用BiLSTM提取电压、相角以及有功功率三种基本电气量的时间序列特征,随后通过卷积和池化操作对数据进行进一步的数据挖掘,最后利用轻量梯度提升机完成对数据的分类。为了避免出现过拟合现象,该方法还通过正则化、Dropout等方式提升模型的泛化性能。在新英格兰10机39节点上的算例表明,该方法能利用基本电气量数据进行暂态稳定评估,且在复杂条件下仍能保持较好的评估性能。 相似文献
17.
采用模式识别中的K最近邻法(KNN方法)对不满足于统计模型的数据阵中的缺省值进行预测,预测以样本值作为预测参照.由于原始数据阵没有训练集,故采用对原始数据进行最大似然主成分分析(MPCA),获得的结论与KNN方法处理后的数据的主成分分析结论相比较,结果表明,两套数据分析得出的主因子数、因子负载阵基本一致,而因子得分阵有细微的差别,预测较缺省值处理可获得更详尽的信息. 相似文献
18.
在核主成分分析中,给每个训练数据赋予一个置信权重,将训练数据视为样本空间的模糊点,研究了基于模糊点数据的核主成分分析.数值模拟表明,该方法能够有效控制异常点对主成分的影响.同时,该方法也为数据先验信息的利用提供了一个可行的途径. 相似文献
19.
针对时间序列分析方法和神经网络对于股价预测具有一定局限性的问题,将基于Attention机制的LSTM模型应用于股价预测;以2014-01-02—2020-09-22日的上证工业指数、上证环保指数等相关数据为样本,在LSTM模型中引入Attention机制,使模型聚焦于重要的股价特征信息,预测股票第二日的最高价;实证研... 相似文献
20.
在实际生产中,通常公司会有一些长期客户的存在,这些长期客户通常表现为协议价格,这些长期客户通常可以避免销售情况的大起大落,虽然协议销售需求稳定,但是通常价格较低。协议销售数量过多,必然会影响企业总体收益,如果过低,则会使需求不稳定,承担较大的风险。为了合理确定协议销售和自由销售之间的关系,本文建立了协议销售与自由销售的收益管理模型,讨论了模型的性质,并给出了算例分析。 相似文献