首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
设Ω是R~m(m≥2)中一个有界区域,考虑多调和算子组的特征值问题AΛ(△)u~T=λu~T,x∈Ωu~k=(?)u~k/(?)n=…=(?)~(k-1)u~k/(?)n~(k-1)=0,x∈(?)Ω,k=1,2,…,N其中,u=(u~1,u~2,…,u~N),n是(?)Ω的单位外法向量。将特征值按增加的顺序排列为0<λ_1≤λ_2≤…≤λ_n≤…则成立如下不等式λ_(n 1)≤λ_n 4/m~2n~2(sum from i=1 to n sum from h=1 to N λ_i~(1/k))(sum from i=1 to n sum from k=1 to N k(2k m-2)λ_i~(1-1/k)) sum from i=1 to n sum from k=1 to N λ_i~(1/k)/λ_(n 1)-λ_i≥m~2n~2/(sum from i=1 to n sum from k=1 to N 4k(2k m-2)λ_i~(1-1/k))  相似文献   

2.
定理设f(z)是下级μ有穷的亚纯函数,P_i是f~((i))(z)的非零有穷亏值数,而f~((0))(z)=f(z);当i为负整数时,f~((i))(z)为f(z)的(i)次原函数(若存在的话)。若对某一正整数k, sum from n=a to δ(a,f~((k)))=2,和 sum from i=-∞ to ∞ P_i=μ。则f~((i))(z)(i=0,±1,±2,…)的所有有穷非零亏值都分别为它们的渐近值。  相似文献   

3.
记单位圆盘E={z||z|<1)中满足条件f(0)=0和f~(?)(0)=1的解析函数f(z)组成的类为A。设f(z)=z+sum from k=2 to ∞ a_kz~k∈A,δ≥0,St.Ruscheweyh在[1]中定义邻域N_s(f)如下: N_δ(f)={g(z)=2+sum from k=2 to ∞ b_kz~k|sum from k=2 to ∞ k|a_k-b_k|≤δ}。[1],[2]研究了使得N_δ(f)中所有函数g(z)含于E中某单叶函数类的条件。本文的目  相似文献   

4.
设(X,Y)为d×1随机向量,f(x,y)为其概率密度函数,(X_i,Y_i) i=1,2,…,n为抽自f的i. i. d. 样本,m(x)(?)E(Y|X=x)称Y对X的回归函数。Watson (1964),Nagaraya (1964)提出用m_n(x)=sum from i=1 to n (Y_iK(?))/sum from i=1 to n (K((x-X_i)/h_n))估计m(x),其中K(x)为R~d上的概率密度,h_n>0,h_n→0(n→∞),这种估计称核估计。引入记号:ω(x)(?) integral from R~1 to ∞(yf(x,y)dy),g(x)(?) integral from R~1 to ∞(f(x,y)dy),又ω_n(x)(?)1/(nh_n~d) sum from i=1 to n (Y_iK)((x-X_i)/h_n),g_n(x)(?)1/(nh_n~d) sum from i=1 to n (K((x-X_i)/h_n)),它们分别是ω(x)和g(x)的估计。则m(x)=ω(x)/g(x),m_n(x)=ω_n(x)/g_n(x)(约定0/0=0)。当d=1时,E. Schuster和S. Yakowitz(1979)证明了在一组条件下,存在常数c>0,他对(?)ε>0,当n充分大时,其中,  相似文献   

5.
本文给出形如p(n)=sum from k=1 to n(k)的幂级数的一种简易求和法,其中f(k)=sum from i=0 to ma_1k~i且a_m≠0。  相似文献   

6.
本文研究了线性函数方程 f(x)=sum from n=1 to l a_if(a_ix) h(x) 以及齐次函数方程 f(x)=sum from i=1 to l a_if(a_ix) 解的渐近性质,其中|a_1|<1,i=1、2,…,l。  相似文献   

7.
設L可积函数f(x)的富理埃級数是 (x)~α_0/2+sum from n=1 to ∞(α_n cos nx+b_n sin nx)=sum from n=0 to ∞(A_n(x))其导級数是sum from n=1 to ∞(n(b_n cos nx-α_n sin nx))=sum from n=1 to ∞(nB_n(x))。又設s_n=sum from k=0 to n(u_k),当  相似文献   

8.
第一牛顿公式:已知xi(i=1,2......,n)的基本对称函数p_1=sum from i=1 (xi),p_2=sum from i≠j(x_ix_j),p_3=sum from i≠j=k(x_ix_jx_k...),P_n=multiply from i=1 to n(x_i);对称函数S_1=sum from i=1 to n(x_i),S_2=sum from i=1 to n(x_i~2),S_3=sum from i=1 to n(x_i~3),...,S_k=sum from i=1 to n(x_i~k)…,k=1,2,3,…,n-1试将对称函数用基本对称函数表出.解:问题可以用初等方法或用指定的一般方法或者更一般地借助于牛顿公式解答.我们考虑关于X的有理整函数:f(x)=(x-x_1)(x-x_2)(x-x_3)…(x-x_n)…(1)或f(x)=x~n-p_1x~(n-1) p_2x~(n-2)-p_3x~(n-3) … (-1)~n×p_n…(2)其中p_i(i=1,2,…,n)是关于X_i;的基本对称函数,由(1),(2)我们分别求出f(x h)f(x h)=(x h-x_1)(x h-x_2)(x h-x_3)…(x h-x_n)  相似文献   

9.
设l,p为二正整数,且满足条件设(1){f(z)}为域D内的一亚纯函数族,{f(z)}中的每个函数f(z)在D内的零点重级均≥l,F(z)-1的零点重级均≥p,这里,F(z)=f~((k))(z)+sum form i=1 to k-1(a_(k-i)f~((i))(z)),且1+sum from i=j to k-1(a_(k-i)≠0),j=0,1,…,k-1,则{f(z)}在D内正规。  相似文献   

10.
本文利用具有重结点的自然样条函数,讨论了线性泛函Ff=sum from i=0 to n-1[integral from a to b a_i(x)D~i f(x)dx+sum from j=0 to L~1 b_(ij)D~i f(x_(ij))]的广义Sard逼近问题。文中给出了线性泛函Lf=sum from i=0 to k sum from j=0 to k_1-1 a_(ij)D~j f(x_i)逼近F为n-1阶准确的存在定理与唯一性定理;给出了L做为F的广义Sard逼近的充分必要条件。  相似文献   

11.
文中给出矩阵级数求和公式:sum from k=0 to ∞(C_k(A-αE))=Pdiag{f(λ_1),……,f(λ_n)}P~(-1)或sum from k=-∞ to ∞(C_k(A-αE))=Pdiag{f(λ_1),……,f(λ_n)}P~(-1)此处C_k(k=0,±1,……)和α是复数,A是n阶矩阵,E是单位阵,而P是满足下列条件的矩阵:P~(-1)AP=diag{λ.,……,λ_n}λ_i∈D(i=1,2……,n),D是Talo级数f(Z)=sum from k=0 to ∞(C_k(Z-α)~k)或Laurent级数f(Z)=sum from k=-∞ to ∞(C_k(Z-α)~k)的收敛域.同时,我们证明了有介单调的矩阵序列收敛,而且按照任何矩阵范数,上述矩阵序列也是收敛的.  相似文献   

12.
一、引言 设给定x_i i=1,2…m,x_i∈[a,b]及此m个点上数据资料f_i i=1,2,…,m,寻求一函数φ(x)=sum from j=1 to n (α_jφ_j(x)),使sum from i=1 to m(ω(x_i)r_i~2)=sum from i=1 to m(ω(x_i))(f_i-(x)=sum from j=1 to n (α_jφ_j(x_i))~2达到最小,此即是带权ω(x)的线性最小二乘问题,其中ω(x)在[a,b]上定义,α_j是拟合系数,n是拟合阶数。  相似文献   

13.
研究三阶差分系统边值问题Δ3ui(k) λhi(k)fi(u1(k),u2(k),…,un(k))=0,k∈[0,T],ui(0)=ui(1)=ui(T 3)=0,i=1,2,…,n.若令f0=sum from i=1 to n lim‖u‖→0 fi(u)/‖u‖且f∞=sum from i=1 to n lim‖u‖→∞ fi(u)/‖u‖,则在f0=0且f∞=∞,或者f0=∞且f∞=0的情况下,运用不动点指数理论证明对于所有的λ>0,上述系统存在一个正解.  相似文献   

14.
In numerical analysis, it is significant to approximate the linear functional Ef=sum from i=0 to m-1([integral from a to b(a_1(x)f~(1)(x)dx+ sum from f=0 to i_1(b_1f~(1)(x_1))]) by a simpler linear functional Lf=sum from i=1 to m(a_1f(x_1)) In this paper, making use of natural Tchebysheff spline function, we give existence theorem and uniqueness theorem of L that is exact for the degree m to F; we also give three sufficient and necessary conditions in which L is the Sard best approximation to F.  相似文献   

15.
本文的主要结果是证明了下述定理定理:设f(x)=sum from n=0 to ∞a_nJ_n(x)的收敛半径不小于1,其中a_n终规为正,即存在正整数N,当n≥N时,有a_n≥0。且sum from n=0 to ∞a_nJ_n′(1)=…=sum from n=0 to ∞a_nJ_n~(h-1)(1)=0 记δ_n=(a_n)/(2~nn!) 则当∞=k时,I(k)存在的充要条件是∑n~(h-1)δ_nlogn收敛。当k<ω相似文献   

16.
本文讨论耗散方程的混合问题{u-(tt)-△u-μ△u_t=H(▽u,D▽u) (t,x)∈(0,T)×Ωu(0,x)=f(x),u_t(0,x)=g(x) ■通过适当的函数变换,运用凸性方法证明了当H(▽u,D▽u)≥ρu_t~2+q sum from i=1 to n u_(x_1)~2++μ(?)u_t sum from i=1 to n u_(x_i)~2+u(q-2)sum from i=1 to m u_(x_1)u_(tx_1)(这里ρ>0,q>0)及integral from Ωe~(qf(x))g(x)dx>0时,所考虑混合问题的光滑解在有限时间内爆破.  相似文献   

17.
设f(x)是定义在[0,+∞)上的函数,吴华英引进了S. Bernstein多项式推广的另一种形式: B_n~*(f, x)=e~(-(nx)~2) sum from n=k=0 to ∞ f(k~(1/2)/n)(nx)~(2l)/k!它不同于O. Szasz提示的S. Bernstein多项式在无穷区间的推广形式 B_n(f, x)=e~(-nx) sum from n=k=0 to ∞ f(k/n)(nx)~k/k! 以上两种形式都是[0,+∞)上的推广。本文将函数f(x)定义在(-∞,+∞)上,并给出它的推广形式:  相似文献   

18.
1940年H.Milloux得到以下两个不等式这里g(z)=f~((k))(z)+sum from f=0 a_j(z)f~((j))(z) 相应于不等式(A)杨乐证明了若f(z)为级λ的整函数.(0<λ<∞),则存在从原点出发的半直线B;argz=θ_o(0≤θ_o<2π)具有以下性质:若k为任意正整数,α,β为两个任意有穷复数,且β不为零,则对于任意正数δ有:  相似文献   

19.
一类极值问题指定理一,一类不等式指定理三。定理一 P_i>0,sum from i=1 to m P_i=1。00,sum from i=1 to m P_i=1,0相似文献   

20.
文中用初等对称多项式来表示特殊对称多项式sk(x1,x2,…,xn)=sum xik from i=1 to n (k=0,1,2,…)方法得到了n元m阶方阵的k次方和sk=sum xik from i=1 to n (k=0,1,2,…)类似的公式,并对其的计算问题进行了研究,得出了一系列结论.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号