首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondria isolated from the plasmodia of Physarum polycephalum Schw. are reacted with rabbit anti-actin antibody, and detected with FITC-conjugated sheep anti-rabbit IgG antibody. The results of indirect immunofluorescence show that actin exists in the mitochondria. Western blot analysis confirms the existence of actin in the protein preparation of the mitochondria. The indirect immunoelectron microscopic observation using the same antibodies verifies further that actin is the constituents of mitochondria, and it is dispersively distributed in the mitochondria of P. polycephalum.  相似文献   

2.
3.
H Maruta  W Knoerzer  H Hinssen  G Isenberg 《Nature》1984,312(5993):424-427
Three functionally distinct actin-capping proteins from the slime mould Physarum are structurally closely related to actin itself. In Physarum, actin polymerization is regulated by a set of non-polymerizable actin-like proteins. It remains to be established whether these proteins and actin are each encoded by separate genes.  相似文献   

4.
A guiding hypothesis for cell-cycle regulation asserts that regulated proteolysis constrains the directionality of certain cell-cycle transitions. Here we test this hypothesis for mitotic exit, which is regulated by degradation of the cyclin-dependent kinase 1 (Cdk1) activator, cyclin B. Application of chemical Cdk1 inhibitors to cells in mitosis induces cytokinesis and other normal aspects of mitotic exit, including cyclin B degradation. However, chromatid segregation fails, resulting in entrapment of chromatin in the midbody. If cyclin B degradation is blocked with a proteasome inhibitor or by expression of non-degradable cyclin B, Cdk inhibitors will nonetheless induce mitotic exit and cytokinesis. However, if after mitotic exit, the Cdk1 inhibitor is washed free from cells in which cyclin B degradation is blocked, the cells can revert back to M phase. This reversal is characterized by chromosome recondensation, nuclear envelope breakdown, assembly of microtubules into a mitotic spindle, and in most cases, dissolution of the midbody, reopening of the cleavage furrow, and realignment of chromosomes at the metaphase plate. These findings demonstrate that proteasome-dependent degradation of cyclin B provides directionality for the M phase to G1 transition.  相似文献   

5.
6.
Phosphorylation of non-muscle caldesmon by p34cdc2 kinase during mitosis   总被引:18,自引:0,他引:18  
S Yamashiro  Y Yamakita  H Hosoya  F Matsumura 《Nature》1991,349(6305):169-172
One of the profound changes in cellular morphology which occurs during mitosis is a massive alteration in the organization of the microfilament cytoskeleton. This change, together with other mitotic events including nuclear membrane breakdown, chromosome condensation and formation of mitotic spindles, is induced by a molecular complex called maturation promoting factor. This consists of at least two subunits, a polypeptide of relative molecular mass 45,000-62,000 (Mr 45-62K) known as cyclin, and a 34K catalytic subunit which has serine/threonine kinase activity and is known as cdc2 kinase. Non-muscle caldesmon, an 83K actin- and calmodulin-binding protein, is dissociated from microfilaments during mitosis, apparently as a consequence of mitosis-specific phosphorylation. We now report that cdc2 kinase phosphorylates caldesmon in vitro principally at the same sites as those phosphorylated in vivo during mitosis, and that phosphorylation reduces the binding affinity of caldesmon for both actin and calmodulin. Because caldesmon inhibits actomyosin ATPase, our results suggest that cdc2 kinase directly causes microfilament reorganization during mitosis.  相似文献   

7.
In vertebrate cells, the nuclear entry of Cdc2-cyclin B1 (MPF) during prophase is thought to be essential for the induction and coordination of M-phase events. Phosphorylation of cyclin B1 is central to its nuclear translocation, but the kinases that are responsible remain unknown. Here we have purified a protein kinase from Xenopus M-phase extracts that phosphorylates a crucial serine residue (S147) in the middle of the nuclear export signal sequence of cyclin B1. We have identified this kinase as Plx1 (ref. 16), a Xenopus homologue of Polo-like kinase (Plk)-1. During cell-cycle progression in HeLa cells, a change in the kinase activity of endogenous Plk1 toward S147 and/or S133 correlates with a kinase activity in the cell extracts. An anti-Plk1 antibody depletes the M-phase extracts of the kinase activity toward S147 and/or S133. An anti-phospho-S147 antibody reacts specifically with cyclin B1 only during G2/M phase. A mutant cyclin B1 in which S133 and S147 are replaced by alanines remains in the cytoplasm, whereas wild-type cyclin B1 accumulates in the nucleus during prophase. Co-expression of constitutively active Plk1 stimulates nuclear entry of cyclin B1. Our results indicate that Plk1 may be involved in targeting MPF to the nucleus during prophase.  相似文献   

8.
Lénárt P  Bacher CP  Daigle N  Hand AR  Eils R  Terasaki M  Ellenberg J 《Nature》2005,436(7052):812-818
Chromosome capture by microtubules is widely accepted as the universal mechanism of spindle assembly in dividing cells. However, the observed length of spindle microtubules and computer simulations of spindle assembly predict that chromosome capture is efficient in small cells, but may fail in cells with large nuclear volumes such as animal oocytes. Here we investigate chromosome congression during the first meiotic division in starfish oocytes. We show that microtubules are not sufficient for capturing chromosomes. Instead, chromosome congression requires actin polymerization. After nuclear envelope breakdown, we observe the formation of a filamentous actin mesh in the nuclear region, and find that contraction of this network delivers chromosomes to the microtubule spindle. We show that this mechanism is essential for preventing chromosome loss and aneuploidy of the egg--a leading cause of pregnancy loss and birth defects in humans.  相似文献   

9.
Cell-free system is interesting and useful for studying nuclear assembly in mitosis. Atomic force microscopy (AFM), which is a simple way for imaging fixed reassemble nuclei with high resolution, has not been used in the cell-free system. In this paper, we put forward an air-drying sample preparation for AFM. Using AFM, we observed nuclear reassembly process within 100 nm resolution in a cell-free system. As a result, we found that the images were artifact-free, and with higher resolution compared with fluorescent optical microscope images. Furthermore, the morphology of membrane vesicles was obtained dearly, and a dynamic change of morphology during the vesides‘‘ approaching to nuclear envelope was also observed, which is enlightened to understand the mechanism of nuclear envelope assembly.  相似文献   

10.
11.
Identification of a widespread nuclear actin binding protein   总被引:16,自引:0,他引:16  
  相似文献   

12.
The role of contractile proteins in the structural organisation of the interphase nucleus and of metaphase chromosomes is largely unknown. Actin has been found in interphase nuclei of different species, especially in association with condensed chromatin. In the germinal vesicle (nucleus) of Xenopus oocytes, actin has been localised in the nuclear gel supporting the chromosomes and the extrachromosomal nucleoli. It has been reported that the premeiotic lampbrush chromosomes in these germinal vesicles are positively stained for actin and tubulin by the immunoperoxidase technique. Moreover, the longitudinal contraction of these chromosomes is ATP dependent. Therefore it has been suggested that actin participates in the structural organisation of the highly specialised lampbrush chromosomes. However, actin is not a major component of the metaphase chromosome scaffold. The results reported here suggest that actin is involved in the condensation of Xenopus chromosomes.  相似文献   

13.
Ramadan K  Bruderer R  Spiga FM  Popp O  Baur T  Gotta M  Meyer HH 《Nature》2007,450(7173):1258-1262
During division of metazoan cells, the nucleus disassembles to allow chromosome segregation, and then reforms in each daughter cell. Reformation of the nucleus involves chromatin decondensation and assembly of the double-membrane nuclear envelope around the chromatin; however, regulation of the process is still poorly understood. In vitro, nucleus formation requires p97 (ref. 3), a hexameric ATPase implicated in membrane fusion and ubiquitin-dependent processes. However, the role and relevance of p97 in nucleus formation have remained controversial. Here we show that p97 stimulates nucleus reformation by inactivating the chromatin-associated kinase Aurora B. During mitosis, Aurora B inhibits nucleus reformation by preventing chromosome decondensation and formation of the nuclear envelope membrane. During exit from mitosis, p97 binds to Aurora B after its ubiquitylation and extracts it from chromatin. This leads to inactivation of Aurora B on chromatin, thus allowing chromatin decondensation and nuclear envelope formation. These data reveal an essential pathway that regulates reformation of the nucleus after mitosis and defines ubiquitin-dependent protein extraction as a common mechanism of Cdc48/p97 activity also during nucleus formation.  相似文献   

14.
Microtubule and microfilament cytoskeletons play key roles in the whole process of cytokinesis. Although a number of hypotheses have been proposed to elucidate the mechanism of cytokinesis by microtubule and actin flament cytoskeletons, many reports are conflicting. In our study,combining the cytoskeletons drug treatments with the time-lapse video technology, we retested the key roles of microtubule and actin filament in cytokinesis. The results showed that depolymerization of microtubules by Nocodazole after the initiation of furrowing would not inhibit the furrow ingression, but obviously decrease the stiffness of daughter cells. Depolymerizing actin filaments by Cytochalasin B before metaphase would inhibit the initiation of furrowing but not chromosome segregation, resulting in the formation of binucleate cells; however, depolymerizing actin fillaments during anaphase would prevent furrowing and lead to the regress of established furrow, also resulting in the formation of binucleate cells. Further, depolymerizing microtubules and actin filaments simultaneously after metaphase would cause the quick regress of the furrow and the formation of binudeate cells. From these results we propose that a successful cytokinesis requires functions and coordination of both the microtubule and actin filament cytoskeletons.Microtubule cytoskeleton may function in the positioning and initiation of cleavage furrow, and the actin filament cytoskeleton may play key roles in the initiation and ingression of the furrow.  相似文献   

15.
J J Blow  R A Laskey 《Nature》1988,332(6164):546-548
In eukaryotes the entire genome is replicated precisely once in each cell cycle. No DNA is re-replicated until passage through mitosis into the next S-phase. We have used a cell-free DNA replication system from Xenopus eggs to determine which mitotic changes permit DNA to re-replicate. The system efficiently replicates sperm chromatin, but no DNA is re-replicated in a single incubation. This letter shows that nuclei replicated in vitro are unable to re-replicate in fresh replication extract until they have passed through mitosis. However, the only mitotic change which is required to permit re-replication is nuclear envelope permeabilization. This suggests a simple model for the control of DNA replication in the cell cycle, whereby an essential replication factor is unable to cross the nuclear envelope but can only gain access to DNA when the nuclear envelope breaks down at mitosis.  相似文献   

16.
沼泽绿牛蛙的核型研究   总被引:1,自引:0,他引:1  
本对沼泽绿牛蛙的染色体核型进行了研究。结果证明了沼泽绿牛蛙的核以式为K(2n)=26=16m+10sm有5对大型不染色体和8对小型染色体,可以分成A、B、C组,雌雄性个体间没有性染色体的分化。在第7号染色体短臂上出现次缢痕。  相似文献   

17.
18.
RNA editing by cytidine insertion in mitochondria of Physarum polycephalum   总被引:13,自引:0,他引:13  
R Mahendran  M R Spottswood  D L Miller 《Nature》1991,349(6308):434-438
A corollary of the central dogma of molecular biology is that genetic information passes from DNA to RNA by the continuous synthesis of RNA on a DNA template. The demonstration of RNA editing (the specific insertion, deletion or substitution of residues in RNA to create an RNA with a sequence different from its own template) raised the possibility that in some cases not all of the genetic information for a trait residues in the DNA template. Two different types of RNA editing have been identified in mitochondria: insertional editing represented by the extensive insertion (and occasional deletion) of uridine residues in mitochondrial RNAs of the kinetoplastid protozoa and the substitutional editing represented by the cytidine to uridine substitutions in some plant mitochondria. These editing types have not been shown to be present in the same organism and may have very different mechanisms. RNA editing of both types has been observed in nonmitochondrial systems but is not as extensive and may involve still different mechanisms. Here we report the discovery of extensive insertional RNA editing in mitochondria from an organism other than a kinetoplastid protozoan. The mitochondrial RNA apparently encoding the alpha subunit of ATP synthetase in the acellular slime mould, Physarum polycephalum, is edited at 54 sites by cytidine insertion.  相似文献   

19.
Cyclin/PCNA is the auxiliary protein of DNA polymerase-delta   总被引:72,自引:0,他引:72  
R Bravo  R Frank  P A Blundell  H Macdonald-Bravo 《Nature》1987,326(6112):515-517
Identification of the cellular proteins whose expression is regulated during the cell cycle in normal cells is essential for understanding the mechanisms involved in the control of cell proliferation. A nuclear protein called cyclin of relative molecular mass 36,000 (Mr 36K), whose synthesis correlates with the proliferative state of the cell, has been identified in several cell types of human, mouse, hamster and avian origin. The rate of cyclin synthesis is very low in quiescent cells and increases several fold after serum stimulation shortly before DNA synthesis. Immunofluorescence and autoradiography studies have shown that the nuclear staining patterns of cyclin during S phase have a sequential order of appearance and a clear correlation can be found between DNA synthesis and cyclin positive nuclei. The proliferating cell nuclear antigen (PCNA) and cyclin have many common properties and it has been shown that these two are identical. Recently a protein which is required by DNA polymerase-delta for its catalytic activity with templates having low primer/template ratios has been isolated from calf thymus. We report here that cyclin and the auxiliary protein of DNA polymerase-delta are identical.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号