首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 437 毫秒
1.
设$x:M\rightarrow A^{n+1}$ 是由定义在凸域 $\Omega\subset A^n$ 上的某局部严格凸函数 $x_{n+1}=f(x_1,\dots,x_n)$ 给出的超曲面. 我们记 $\rho(x)=\left(\det\left(\frac{\partial^2f}{\partial x_i\partial x_j}(x)\right)\right)^{-\frac{1}{n+2}} $. 假设 $(M, g)$ 是一完备的Hessian流形且具有非负的李奇曲率,如果 $\rho$ 满足 $\Delta_{g}\rho=\beta\frac{\parallel\nabla\rho \parallel_g^2}{\rho}(\beta\neq 1)$ , 则 $M$ 一定是椭圆抛物面.  相似文献   

2.
应用格林函数的性质和迭代法, 研究了一类具有变号格林函数的三阶三点边值问题 $\left\{ {\begin{array}{*{20}{c}} \begin{array}{l} u'\left( t \right) = f\left( {t,u\left( t \right)} \right)\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( {t \in \left[ {0,1} \right]} \right),\\ u\left( 1 \right) = 0,u'\left( 0 \right) = u'\left( 0 \right),\alpha u'\left( \eta \right) + \beta u\left( 0 \right) = 0 \end{array} \end{array}} \right.$ 正解的存在性, 其中, f∈C([0, 1]×[0, ∞), [0, ∞)), α∈[0, 1], $\frac{2}{7}$α < β < $\frac{2}{3}$α, η∈[$\frac{2}{3}$, 1). 得到了该边值问题正解存在性的条件.  相似文献   

3.
设 $x:M\rightarrow R^{n+1}$ 是局部强凸超曲面, 由定义在凸域$D \subset R^{n}$上的局部强凸函数 $x_{n+1}=f(x_{1},...,x_{n})$给出. 在$M$上定义 $F$- 度量 $\tilde{G}=F(\rho)\sum\frac{\partial^{2}f}{\partial x_{i}\partial x_{j}}dx_{i}dx_{j}$.研究$F$-完备抛物仿射超球,得到了相应的Bernstein性质.  相似文献   

4.
应用广义的Leggett-Williams不动点定理,研究了四阶两点边值问题 $ {{u}^{\left( 4 \right)}}\left( t \right)=f\left( u\left( t \right) \right)\ \ \ \ \ \left( t\in \left[ 0, 1 \right] \right), u\left( 0 \right)=u\left( 1 \right)=0, {u}'\left( 0 \right)={u}'\left( 1 \right)=0 $ 正解的存在性, 其中$f:\mathbb{R}\to \left[ 0, +\infty \right)$连续. 在f满足适当的增长条件下, 得到该问题至少存在3个对称正解.  相似文献   

5.
基于值分布和正规族理论以及高等代数相关知识,研究了全纯曲线族及其导曲线分担处于$ t $次一般位置的超平面的正规定则。设$ \mathcal{F} $是一族从区域$ D \subset \mathbb{C} $到${\mathbb{P}}^{N}(\mathbb{C})$的全纯曲线,${H_\ell } = \rhbr \left\{ {{\bm{x}} \in {\mathbb{P}^N}(\mathbb{C}):} \right.\left. {\left\langle {{\bm{x}},{{\bm{\alpha}} _\ell }} \right\rangle = {\text{0}}} \right\}$是$ {\mathbb{P}^N}(\mathbb{C}) $中处于$ t $次一般位置的超平面,${{\bm{\alpha}} _\ell } = {\left( {{a_{\ell 0}},{a_{\ell 1}}, \cdots ,{a_{\ell N}}} \right)^{\text{T}}},{\text{ }}\ell = 1,2, \cdots ,3t + 1$,$ {H_0} = \left\{ {{x_0} = {\text{0}}} \right\} $,$t\geqslant N$。假定对任意的$ f \in \mathcal{F} $满足条件:若$ f(z) \in {H_\ell } $,则$ \nabla f(z) \in {H_\ell } $,$ \ell = 1,2, \cdots ,3t + 1 $;若$f(z) \in \displaystyle \bigcup\limits_{\ell = 1}^{3t + 1} {{H_\ell }}$,则$\dfrac{\left|\langle f(z),{H}_{0}\rangle \right|}{\Vert f(z)\Vert \cdot \Vert {H}_{0}\Vert }\geqslant\delta$,其中,$ \delta \in \left(0,1\right) $且为常数。那么,$ \mathcal{F} $在$ D $上正规。对于$ N = 3 $,$ t = 3,4,5 $的特殊情形,本文有效降低了所分担超平面的个数。  相似文献   

6.
利用亚纯函数值分布理论和正规族理论、线性代数理论及研究方法,研究了全纯曲线族分担超平面的正规性。设$ \mathcal{F} $是从$ D\subset \mathbb{C} $到${\mathbb{P}}^{3}\left(\mathbb{C}\right) $的一族全纯映射,$ {H}_{0}$和${H}_{l}({H}_{l}\ne {H}_{0}) $是$ {\mathbb{P}}^{3}\left(\mathbb{C}\right) $上处于一般位置的超平面,$l=1,2,\cdots,8 $。假定对于任意的$ f\in \mathcal{F} $满足条件:$f(\textit{z})\in H_l$当且仅当$\nabla f \in H_l=\{x\in {\mathbb{P}}^{3}\left(\mathbb{C}\right): \rhbr \langle x, \alpha_l \rangle=0\}$;若$f(\textit{z})\in H_l $的并集,有$|\langle f\left(z\right),{H}_{0}\rangle|/(\|f\|\|{H}_{0}\|)$大于或等于$\delta $。$0 < \delta < 1 $,$\delta $是常数,则 $ \mathcal{F} $在D上正规。  相似文献   

7.
设~$\lambda_1, \lambda_2, \lambda_3, \lambda_4$是正实数, $\frac{\lambda_1}{\lambda_2}$是无理数和代数数, $\mathcal {V}$是具有良好间隔的序列, $\delta>0$. 证明了: 对于任意的$\varepsilon>0$及$v\in \mathcal {V},\ v\leq X$, 使得$|\lambda_1p_1^2+\lambda_2p_2^2+\lambda_3p_3^3+\lambda_4p_4^3-v|相似文献   

8.
本文我们考虑了以下一类具有曲率算子的非线性方程 $$\frac{\partial q(x,t)}{\partial t}+\frac{\partial}{\partial x}(\frac{\frac{\partial q(x,t)}{\partial x}}{\sqrt{1+(\frac{\partial q(x,t)}{\partial x})^{2}}})-g(q(x,t))=0.$$通过运用单调动力系统定理, 我们建立了方程波前解的存在性条件.  相似文献   

9.
主要讨论了加权Hardy-Littlewood 平均算子$U_{\psi}$与BMO函数$b$生成的交换子在Herz型空间和Morrey型 Herz空间上的有界性,并给出了其在Morrey型 Herz空间上有界的充分条件是 $\int_0^1t^{-(\alpha+n/q_2-\lambda)}\psi(t)\log{\frac{2}{t}}dt\infty.$ 若$\alpha=0$,$\lambda=0$,$q_1=q_2=p1$,则$\int_0^1t^{-(\alpha+n/q_2-\lambda)}\psi(t)\log{\frac{2}{t}}dt=\int_0^1t^{-n/p}\psi(t)\log{\frac{2}{t}}dt\infty$, 此时交换子$U_{\psi}^b$是$L^p(R^n)$空间上的有界算子.  相似文献   

10.
利用亚纯函数值分布理论和正规族理论、线性代数理论及研究方法,研究了全纯曲线族分担超平面的正规性。设\begin{document}$ \mathcal{F} $\end{document}是从\begin{document}$ D\subset \mathbb{C} $\end{document}到\begin{document}${\mathbb{P}}^{3}\left(\mathbb{C}\right) $\end{document}的一族全纯映射,\begin{document}$ {H}_{0}$\end{document}和\begin{document}${H}_{l}({H}_{l}\ne {H}_{0}) $\end{document}是\begin{document}$ {\mathbb{P}}^{3}\left(\mathbb{C}\right) $\end{document}上处于一般位置的超平面,\begin{document}$l=1,2,\cdots,8 $\end{document}。假定对于任意的\begin{document}$ f\in \mathcal{F} $\end{document}满足条件:\begin{document}$f(\textit{z})\in H_l$\end{document}当且仅当\begin{document}$\nabla f \in H_l=\{x\in {\mathbb{P}}^{3}\left(\mathbb{C}\right): $\end{document}\begin{document}$ \langle x, \alpha_l \rangle=0\}$\end{document};若\begin{document}$f(\textit{z})\in H_l $\end{document}的并集,有\begin{document}$|\langle f\left(z\right),{H}_{0}\rangle|/(\|f\|\|{H}_{0}\|)$\end{document}大于或等于\begin{document}$\delta $\end{document}。\begin{document}$0 < \delta < 1 $\end{document},\begin{document}$\delta $\end{document}是常数,则 \begin{document}$ \mathcal{F} $\end{document}在D上正规。  相似文献   

11.
研究带有强阻尼时滞项的m-Laplacian型波方程:utt-Δmu-Δu+g*Δu-μ1Δut(x,t)-μ2Δut(x,t-τ)=(u)p-2u解的爆破:当初始能量00,ν>0,t≥0),在(0,t)...  相似文献   

12.
本文研究了一阶周期边值问题■多个正解的存在性,其中λ>0是一个参数,a∈C(R,[0,∞))是一个T-周期函数且∫T0a(t)dt>0,f∈C([0,∞),(0,∞))且单调递增.在■的条件下,本文证明存在一个λ*>0,使当0<λ<λ*时问题不存在正解;当λ=λ*时问题至少存在一个正解;当λ>λ*时问题至少存在两个正解.主要结果的证明基于上下解方法和Leray-Schauder度.  相似文献   

13.
讨论了一类带有分数阶导数边值条件的分数阶微分方程■其中,D■是Rimann-Liouvile分数阶导数,η■i(0,1),0<η12<…<ηm-2<1,β■i[0,∞)。文中给出其格林函数及相关性质,运用凸泛函上的不动点指数定理来计算不动点指数,从而得到了上述边值问题至少存在一个正解的结论。最后通过一个例子说明定理的具体应用。  相似文献   

14.
By the construction of a Cauchy sequence in a Banach space and the global bounded estimate of solution,we obtain the global existence and the bounded estimate of solution of BBM-Burgers equation without the viscous term u_t +∑ n j=1 f_j(u)_xj-γ_1△u_t+γ_3△~2u=0with large initial date in 4-dimension space.  相似文献   

15.
利用到复射影空间Pn(C)的全纯映射的正规性和值分布理论,结合Zalcman引理,对单位圆盘到高维复射影空间中全纯曲线的Landau定理进行了研究,得到了如下结果:设f:?→Pn(C)为全纯曲线D1,D2,…,D2t+1为Pn(C)上的2t+1个超曲面且位于t?次一般位置.若对于每一个j=1,2,…,2t+1,f(c)...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号