首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Oryza sativa and O. latifolia belong to the AA and CCDD genomes of Oryza, respectively. In this study, interspecific hybrids of these species were obtained using the embryo rescue technique. Hybrid panicle traits, such as long awns, small grain, exoteric large purple stigma, grain shattering and dispersed panicles, resemble that of the paternal parent, O. latifolia, whereas there is obvious heterosis in such respects as plant height, tillering ability and vegetative vigor. Chromosome pairing and the genomic components of the hybrid were subsequently investigated using genomic in situ hybridization (GISH) and fluorescent in situ hybridization (FISH) analysis. Based on the mitotic metaphase chromosome numbers of the root tips investigated, the hybrid is a triploid with 36 chromosomes. The genomic constitution of the hybrid is ACD. In the meiotic metaphase Ⅰ of the hybrid pollen mother cell, poor chromosome pairing was identified and most of the chromosomes were univalent, which resulted in complete male sterility in the hybrid.  相似文献   

2.
Thousand-grain weight (TGWT) is an important factor affecting grain yield as well as grain quality in rice. A quantitative trait locus (QTL) qTGWTI-1 for TGWT was detected previously near DNA marker RG532 on the short arm of chromosome 1 in a recombinant inbred line (RIL) population derived from the indlca-indica rice cross Zhengshan97B (ZS97B)/Milyang46 (MY46). In this study, two residual heterozygous lines (RHLs), Chl and Ch2, derived from the ZS97B/MY46 RIL F7 population, were used to develop two Fe populations, RIL-1 and RIL-2. The genome of Chl and Ch2 contains a heterozygous region flanked by RM1--RM3746 and RM151--RM243 on the short arm of chromosome 1, respectively, but is homozygous in other regions. Two tightly linked QTLs, Gwl-1 and Gwl-2, with the same additive direction and similar effect on TGWT, were detected in the region of QTL qTGWTI-1 in population RIL-2. No QTL was detected in the population RIL-1. Four individual RHLs from the population RIL-2 carrying heterozygous segments flanked by RM151--RM10404, RM10381--RM243, RM10435--RM259 and RM10398--RM5359, respectively, were chosen to develop four F= populations. Ten maternal homozygotes and 10 paternal homozygotes were selected from each of the four F2 populations derived from the four RHLs. The four sets of near isogenic lines (NILs) were grown for phenotyping of TGWT and delimitation of Gwl-1 and Gw1-2. Results showed that Gwl-1 and Gw1-2 were located in the intervals RM10376--RM 10398 and RM10404--RM 1344 which cover 392.9 and 308.5 kb regions, respectively. The enhancing alleles were from ZS97B at both loci, and no significant interactions were detected. Genetic dissection of Gwl-1 and Gwl-2 has laid a foundation for their cloning and molecular breeding of grain yield and quality in rice.  相似文献   

3.
To enhance understanding of the genetic basis of trait correlation in rice, a recombinant inbred line (RIL) population (F6 and F7) from a cross between Zhenshan97 and HR5 was employed to identify main quantitative trait loci (QTLs) and epistatic QTL (E-QTL). Highly significant positive correlations were detected among five traits of heading date (HD), plant height (PH), panicle length (PL), flag leaf length (FLL) and flag leaf width (FLW) in 2 environments. Four to 8 main QTLs were detected for an individual trait. No E-QTL was detected for PH. One, 4, 4 and 5 E-QTLs were detected for FLL, HD, FLW and PL, respectively. Each E-QTL individually explained less than 3% of trait variation except E-QFll1. Comparison of QTL results was made in order to dissect the genetic basis of trait correlation. We found that main QTLs with pleiotropic effects and QTL clusters were the main genetic basis of trait correlation. No E-QTL had pleiotropic effects. E-QTL played an important role in the genetic basis of individual trait, but it made a little contribution to trait correlation.  相似文献   

4.
The crystal structure stability as well as electric conductance of (Sr/Ca)2CuO2Cl2 compound with K2NiF4 structure was investigated up to 31 GPa using diamond anvil technique. It seems that (Sr/Ca)2CuO2Cl2 is quite stable under pressure but with obvious anisotropic compressibility. The equation of state (EOS) obtained shows relative large bulk modulus.  相似文献   

5.
The compression behavior of Ni77P23 amorphous alloy is investigated at room temperature in a diamond-anvil cell instrument using insitu high pressure energy dispersive X-ray diffraction with a syn- chrotron radiation source. The equation of state is determined by fitting the experimental data accord- ing to Birch-Murnaghan equation: -ΔV/V0=0.08606P-3.2×10-4P2 5.7×10-6P3. It is found that the structure of Ni77P23 amorphous alloy is stable under pressures up to 30.5 GPa.  相似文献   

6.
Fabrication and S-F-codoping of TiO2 nanotubes were carried out by a one-step electrochemical anodization process to extend the photoresponse of TiO2 to the visible-light region. The prepared samples were annealed in air and detected by SEM, XRD, XPS and UV-vis DRS spectrophotometer. The results showed that the average tube diameter of the nanotubes was 150 nm and the average tube length was 400 nm. The doped TiO2 nanotubes exhibited strong absorption in visible-light region. Photoelectrocatalytic degradation efficiency of 4-CP over S-F-codoped TiO2 nanotubes was 39.7% higher than that of only-F-doped sample. Moreover, sulfur and fluorine codoped into substitutional sites of TiO2 had been proven to be indispensable for strong response and high photocatalytic activity under visible light, as assessed by XPS.  相似文献   

7.
In wheat, plant height is an important agronomic trait, and a number of quantitative trait loci (QTLs) controlling plant height have been located. In this study, using the conditional and unconditional QTL mapping methods, combined with data from five different growth stages over two years of field trials, the developmental behavior for plant height in wheat was dissected. Nine unconditional QTLs and 8 conditional QTLs were identified, of which 6 were detected by both methods. None of the 11 QTLs was detected at all of the 5 investigated developmental stages, but 7 QTLs were detected at certain stages in both years. Further analysis identified 9 unconditional QTLs at different stages, which could explain the phenotypic variation from 4.81% to 17.35%. It was noteworthy that one major QTL designated QHt-4B-2, which was located on chromosome 4B, was detected on May 18 and 25 in both years, and its genetic contributions to plant height ranged from 13.42% to 16.13%. Moreover, of the 8 conditional QTLs identified, six were detected in both years, in the order of QHt-3BQHt-4B-1QHt-4B-2QHt-4DQHt-5A and QHt-2B expressed at the same developmental stage. The results indicate that QTL expression during plant height development is selective and in a temporal order.  相似文献   

8.
Zn-doped titanium oxide (TiO2) nanotubes electrode was prepared on a titanium plate by direct anodic oxidation and immersing method in sequence. Field emission scanning electron microscopy (FESEM) showed that the Zn-doped TiO2 nanotubes were well aligned and organized into high density uniform arrays with diameter ranging from 50 to 90 nm. The length and the thickness were about 200 and 15 nm respectively. TiO2 anatase phase was identified by X-ray diffraction (XRD). X-ray photoelectronspectroscopy (XPS) indicated that Zn ions were mainly located on the surface of TiO2 nanotubes in form of ZnO clusters. Compared with TiO2 nanotubes electrode, about 20 nm red shift in the spectrum of UV-vis absorption was observed. The degradation of pentachlorophenol (PCP) in aqueous solution under the same condition (initial concentration of PCP: 20 mg/L; concentration of Na2SO4:0.01 mol/L and pH: 7.03) was carried out using Zn-doped TiO2 nanotubes electrode and TiO2 nanotubes electrode. The degradation rates of PCP using Zn-doped TiO2 nanotubes electrode were found to be twice and 5.8 times as high as that using TiO2 nanotubes electrode by UV radiation (400 μw/cm^2) and visible light radiation (4500 μw/cm^2), respectively. 73.5% of PCP was removed using Zn-doped TiO2 nanotubes electrode against 45.5% removed using TiO2 nanotubes electrode in 120 min under UV radiation. While under visible light radiation, the degradation efficiency of PCP was 18.4% using Zn-doped TiO2 nanotubes electrode against 3.2% using TiO2 nanotubes electrode in 120 min. The optimum concentration of Zn doping was found to be 0.909%. The PCP degradation efficiencies of the 10 repeated experiments by Zn-doped TiO2 nanotubes electrode were rather stable with the deviation within 3.0%.  相似文献   

9.
Pure anatase TiO2 films have been made via hydration of titanium isopropoxide using a sol-gel tech-nique, while mixed TiO2 films which contained both anatase and rutile TiO2 were made from commercial P25 powder. Quasi-solid state dye-sensitized solar cells were fabricated with these two kinds of mesoporous films and a comparison study was carried out. The result showed that the open-circuit photovoltages (Voc) for both kinds of cells were essentially the same, whereas the short-circuit photo-currents (1sc) of the anatase-based cells were about 33% higher than that of the P25-based cells. The highest photocurrent intensity of the anatase-based cell was 6.12 mA/cm^2 and that of the P25-based cell was 4.60 mA/cm^2. Under an illumination with the light intensity of 30 mW/cm^2, the corresponding energy conversion efficiency was measured to be 7.07% and 6.89% for anatase-based cells and P25-based cells, respectively.  相似文献   

10.
Nanoparticles of Ce0.6Zr0.35Y0.05O2 (CZY) solid solution have been prepared by the CTAB (hexadecyl-trimethyl ammonium bromide), CTAB-EG (ethylene glycol) templating, and CTAB-EG-NaCl (in which the pores of the precursor synthesized by the CTAB-EG method is filled by a certain amount of NaCl) method, respectively. The physical properties of these materials were characterized by means of tech-niques such as X-ray diffraction (XRD), high resolution scanning electron microscopy (HRSEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and N2 adsorp-tion-desorption measurements. The CZY samples synthesized by the above three methods display wormhole-like mesoporous morphology and cubic crystal structures. The materials are narrow in pore size distribution (averaged pore diameter = 5.3―7.1 nm), high in surface areas (95―119 m2/g), and large in pore volumes (0.16―0.18 cm3/g). It has been demonstrated that the introduction of NaCl is capable of retaining the pore structures of solid nanomaterials at high-temperature calcination.  相似文献   

11.
Novel N-doped TiO2 (denoted as N-NTA600) was prepared by treating nanotube titanic acid (NTA) in NH3 flow. Its visible light photocatalytic activity,evaluated by decoloration reaction of methylene blue,is higher than that of N-P25(600) prepared by treatment of P25-TiO2 in the same condition. It is suggested that the origin of visible-light photocatalytic activity is single-electron-trapped oxygen vacancy (Vo·) modified by chemisorbed NO.  相似文献   

12.
Nano-SiC doped MgB2 tapes were prepared by the in situ powder-in-tube method. Heat treatment was performed at 650℃ for 1 h. XRD data indicate that SiC particles had reacted with the MgB2 during sintering process. MgB2 core seemed to be denser after SiC doping, and the critical temperature was slightly depressed. The critical current density Jc of the SiC doped tapes was significantly enhanced in magnetic fields up to 14 T compared to the undoped ones. For the 5% SiC doped samples, Jc was in- creased by a factor of 32 at 4.2 K, 10 T. The enhancement of Jc-B properties in SiC doped MgB2 tapes is considered to be due to the enhancement of grain linkages and the introduction of effective flux pining centers. The substitution of B by C in MgB2 grains is thought to be the main reason for the improve- ment of the flux pinning ability in SiC doped MgB2 tapes.  相似文献   

13.
Spherical MgSO4 droplets were deposited by a syringe on the hydrophobic Teflon substrate. Using micro-Raman technique, the laser beam was highly focused twice on the surface and in the center of spherlcel droplets. The Raman spectra for the surface and the inner of MgSO4 droplets were accordingly obtained, suggesting formation of a thin layer of gels on MgSO4 droplets at low relative humidity. The gel layer covered the surface and exhibited a significant delay in response to the change of amblent relative humidity, resulting in the structural difference between the surface and the inner of MgSO4 droplets.  相似文献   

14.
Paleoecological records of soil δ^13Corg from three regions in the middle latitudes of the Northern Hemisphere, including the Chinese Loess Plateau (CLP), the Great Plains and adjacent areas of North America and northwestern Europe, showed different variations since the Last Glacial period. An attempt was made to evaluate the causes for the difference in δ^13Corg on the basis of the modern climatic data collected in these regions and of the modern C3 and C4 plant distributions. The analysis indicates that temperature, especially the growing season temperature, has a dominant control on the growth of C4 plants. When the mean annual or growing season temperatures are below the "threshold value", the growth of C4 plants is limited. When the temperature is above the "threshold value", C4 plants can grow under a wide range of precipitation. However, when the precipitation is high enough to favor the growth of trees, the proportions of C4 plants in local biomass will decline. The implicit control factor recovered by sedimentary records is consistent with the control factor on modern C3/C4 distribution. Pure C3 plants have been dominating the local biomass since the Last Glacial period in European loess region, mainly owing to the low local temperature. The increases in C4 plants from the late Pleistocene to the Holocene in the Chinese Loess Plateau, the Great Plains and adjacent areas, mainly reflect the influence of increasing temperature.  相似文献   

15.
This paper reports the thermoluminescence (TL) characteristics of lithium borate activated by Cu, Ag and P. The glow curves and spectra of thermoluminescence were measured, and the thermoluminescence response as a function of the absorbed dose and the fading behavior were studied. The results indicate that TL of this material has a low fading and wide linear dose response (10^-4-10^3 Gy).  相似文献   

16.
Existing cotton EST-SSR markers are mostly derived from Gossypium arboreum and Gossypium hir-sutum, but EST-SSR markers from Gossypium barbadense are scarce. One hundred and nineteen EST-SSRs were developed based on 98 unique ESTs from a cDNA library constructed in our laboratory using developing fibers from G. barbadense cv. Pima3-79. Among the SSRs, trinucleotide AAG appeared at a high frequency of 11.76%. 36 accessions (consisting of 13 diploids of the A genome, 11 diploids of the D genome and 12 allotetraploids of the AD genome) were employed to test new EST-SSRs. 76 EST-SSRs were successfully amplified, and 313 polymorphic fragments were yielded, with an average of 4.11 fragments per primer pair. The PIC ranged from 0.17 to 0.95 with an average of 0.53. Based on Jaccard’s genetic similarity coefficient, these 36 accessions were clustered into three groups. 21 EST-SSRs exhibited polymorphisms in BC1 population ((Emian22 × Pima3-79) × Emian22), 24 polymor- phic loci were generated, while 22 of the 24 polymorphic loci were integrated with our interspecific BC1 backbone genetic linkage map, and anchored in 12 chromosomes. This study effectively proved that EST-SSRs from G. barbadense are valuable for genetic diversity analysis and genetic mapping.  相似文献   

17.
The reaction mechanism between (Me)3CO· radical and trans-3-hexene in benzene was studied for the first time at the B3LYP/6-311++G(d,p)//B3LYP/6-31G(d)+ZPVE level. Two distinct elementary channels were identified as: (1) abstraction-addition; (2) addition-addition-elimination. Analysis of the potential energy surface demonstrates that for the title reaction, channels (1) and (2) have the major and minor contribution, respectively. Our calculated results can well explain the recently observed product distribution by Coseri et al. (J. Org. Chem. 2005, 70, 4629). However, we found that the addition-abstraction channel proposed by Coseri et al. is kinetically infeasible.  相似文献   

18.
Chromosome segment substitution lines (CSSL) consist of a battery of near-isogenic lines that have been developed and cover the entire genome of some crops. With the exception of one homozygous chromosome segment transferred from a donor parent, the remaining genome of each CSSL line is the same as the recipient parent. It is an ideal material for genome research and particularly QTL mapping. In the present study, we first developed one set of CSSL lines using G hirsutum acc. TM-1 (the genetic standard), as the recipient parent and G barbadense cv. Hai7124 as the donor parent using molecular assistedlselection in BC5S1-3 generations. The CSSL consisted of 330 different lines, in which 1-4 different lines had the same or overlapping substituted segments. The genetic length of the substituted segments covered 5271.9 cM with an average segment distance of 10.9 cM, 1.5 times the total genetic length of Upland cotton (3514.6 cM). The substituted segments of each line varied in length, ranging from 3.5 cM for the shortest segment to 23.2 cM in the longest segment. Our CSSL have not yet to cover the entire tetraploid cotton genome, due to the absence of some donor parent interval segments.  相似文献   

19.
Hybrid sterility is a major form of postzygotic reproductive isolation and frequently occurs in hybrids between divergent populations, such as the indica and japonica subspecies of Asian cultivated rice (Oryza sativa L.). It has been a major barrier for utilization of the strong heterosis expressed in hybrids between indica and japonica. A large number of loci for rice inter-subspecific hybrid sterility have been identified by genetic analysis. Cytological studies revealed that male and female gamete abortions and reduced affinity between the uniting gametes all occurred in indica-japonica hybrids, suggesting the complexity of the causes for inter-subspecific hybrid sterility. Two genes conditioning embryo-sac and pollen sterility respectively in indica-japonica hybrids have been cloned recently, providing opportunities for molecular characterization of the indica-japonica hybrid sterility and wide-compatibility. Future studies should aim at cloning more genes for indica-japonica hybrid sterility, characterizing the underlying molecular mechanism, and utilization of the findings for the development of inter-subspecific hybrids to increase rice productivity.  相似文献   

20.
The Eu, Tb co-doped SiO2 matrix tricolor fluorescence system was prepared by sol-gel technique. Red emission at 618 nm, green emission at 543 nm and blue emission at 350-500 nm were observed in the PL spectra of the sample, indicating that Eu^3+, Eu^2+ and Tb^3+ ions coexisted in the matrix. In the co-doped sample, the blue emission of Eu^2+ was much stronger than that of the sample single doped with Eu, which implied that the electron transfer between Eu^3+ and Tb^3+ maybe happened in the SiO2 matrix. The influences of the annealing temperature and Tb concentration on the PL spectra of the samples were investigated. The optimal doped concentration of Tb was determined to be 0.2% and the optimal annealing temperature 850℃. Annealed at 600℃, Tb^3+ had a sensitizing effect on Eu^3+ in the SiO2 matrix, and the emission intensity of Eu^3+ in the Eu, Tb co-doped sample was more than four times that of the single doped sample, which could be attributed to the energy transfer from Tb^3+ to Eu^3+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号