首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
锂离子电池组均衡充电和保护系统研究   总被引:11,自引:0,他引:11  
为了提高串联电池组充电过程中的一致性,设计了电池组均衡充电保护系统并介绍了其具体实现方法.分析了锂离子电池组均衡充电保护系统在电池组充电过程中的均衡充电和保护功能,建立了电池组均衡充电的控制模型.在锂离子电池组的均衡充电试验过程中,测量了模块的分离电流和反馈总线电压.豪华电动大客车BFC6100EV运行试验表明,均衡充电保护系统改善了电池组充电过程中的一致性以及保护作用,改善了电池的性能,延长了电池组的使用寿命.  相似文献   

2.
针对车载磷酸铁锂动力电池组串联充电的需求,搭建了磷酸铁锂动力电池组管理系统,对动力电池组进行了串联充电试验。分析了电池组串联充电过程中单节电池电压和荷电状态不一致的情况,讨论了电池组单节电池的分散性对充电性能的影响,提出了对单节电池进行小电流补充充电的均衡方法,使电池组中单节电池的荷电状态基本相等。理论分析和试验验证表明,电池组串联充电末期,单节电池之间电压相差较大,荷电状态有一定差异,对单节电池补入少量电量(小于5%)即可使得电池组荷电状态一致性得到较大的改善。提出一种阶段式动力电池组均衡充电方法,从而可以避免动力电池组个别电池过充,而其他电池充不满的问题。  相似文献   

3.
针对镍氢电池温度变化直接影响电池组的性能和寿命等问题,研究了镍氢蓄电池组充放电产生的温升和温度分布.分析了电池产热机理,以降低电池组的最高温升为目标,综合考虑了电池温升和充电电流等因素的较大初始充电电流,提出了分阶段恒流充电控制策略,并进行了数值仿真分析.通过电池组温度场模型理论分析,对现有电池组散热结构进行了优化,通...  相似文献   

4.
对MH/Ni电池组(结构A)的充电热效应进行了分析,采用FLUENT软件模拟的方法,研究了两种新型MH/Ni电池组结构(结构B和C)热管理的通风冷却效果.根据计算,分析了流动回流因素对温度场的影响,并提出了结构改进建议.热管理系统C型在电池组充放电试验中的结果表明:8 A充电时电池组内温度升高小于5℃,温度差异小于4℃,系统冷却效果良好.  相似文献   

5.
文中介绍了将一线总线器件DS2781用于锂电池组充电过程的管理,简化了电池管理检测电路的结构,通过读取电池组的状态参数。如电池组充电电流、电压、电池串数、温度和充电次数等,并把它们用于电池组的充电过程控制,从而提高了锂电池组充电控制的精确性.充电管理的可靠性和安全性。  相似文献   

6.
针对现有均衡充电方法的缺点,提出了一种基于能量转移的锂电池组单体电池均衡充电方法,详细分析了该方法的工作原理并通过实验对所提出的均衡电路进行了分析与论证.结果表明,该方法具有结构简单、效率高的优点,能有效地解决串联锂电池组充电不平衡问题.  相似文献   

7.
无线充电技术是一种利用电磁感应(即电感耦合),将电能从供电端递送至用电端的技术.BMS即电池管理系统,是负责处理动力电池组实时状态的重要装置,起到了保护电池组与用电设备的稳定性和安全性的作用.本文设计了无线充电装置的电路及其电池管理系统(BMS),并具备SOC的估算以及电池组保护功能,有效地实现了电池组的主动均衡.通过...  相似文献   

8.
动力锂电池组充电管理电路设计   总被引:7,自引:0,他引:7  
为了解决动力锂电池组使用中的一致性问题,本文提出了一种均衡充电管理电路的实现方案.首先分析了单体锂电池的特性;然后在比较各种均衡充电理论的基础上,选择部分分流法作为设计思路,进行具体电路设计.多次锂电池组充放电实验表明,该均衡充电管理电路能有效改善电池组充电的一致性,提高电池组工作性能,延长使用寿命.  相似文献   

9.
林伟 《海峡科学》2000,(3):44-44
随着无线电测向活动的开展,镉镍电池的野外充电就显得非常重要.为了便于携带现在常用的都以12V的汽车蓄电池作充电源,对无线电测向信号源电池组进行快速充电,但是这种方法有一定的限制,一般不能充大于8.4V的电池组,而测向信号源电池组电压一般在12V-9V间.因而需要一种移动的、轻便的大于12V的充电源电压提升器.但是目前国内市场还没有这类产品.由于活动的需要对此我作了一些尝试制作.  相似文献   

10.
为缓解锂离子电池组在恒流充电结束后因压降导致的电池组电压不一致问题,提出了一种改进型可重构均衡电路。在电池组充电过程中,改进型可重构均衡电路可等效为传统可重构电路,通过可重构电路控制各个电池充电状态,使电池组在充电过程中达到均衡;充电结束后并静置一段时间,通过改进型可重构电路中的Buck-Boost电路进行再均衡。改进型可重构电路能够在保证充电均衡的基础上对因压降现象而造成的电池组电压不一致进行再均衡。最后,通过搭建实物平台对该改进型可重构均衡电路进行验证,并与传统可重构电路进行比较,实验结果表明该均衡电路具有良好的性能。  相似文献   

11.
智能锂电池充电器设计   总被引:1,自引:0,他引:1  
为解决锂电池的快速充电问题,设计一种具有电压和电流检测功能的智能锂电池充电器系统,并给出了相关单元模块电路及其驱动程序的流程图。该设计以MSP430单片机为控制核心, 对电池进行电压电流采集,通过判断电池所处的充电状态,调整PWM (Pulse Width Modulation)波的占空比,以实现高精度控制充电。实验结果表明,该智能充电器可安全地进行锂电池的快速充电,耗时约1 h,比一般充电器(2~3 h)的充电速度有显著提高,从而有效缩短了锂电池的充电时间。  相似文献   

12.
对锂离子电池及其充电方法进行了概述,并对小型光伏充电控制器进行了研究,当光伏电池输出电压在0.8~35 V时,均可对锂离子电池进行充电。控制器用单片机来监测锂电池电压和充电电流,以保证锂电池的安全充电,采用间歇式充电方式对3.6 V锂电池进行充电,间歇时间可进行人工设置,采用定时和最小充电电流双重控制来终止充电过程。试验表明:该系统可满足锂电池充电要求,具有友好的人机界面,当光伏电池板输出电压低至0.8 V时仍然可以满足3.6 V锂电池的充电要求。  相似文献   

13.
HEV再生制动时NiMH电池快速充电策略与仿真   总被引:1,自引:0,他引:1  
基于镍氢电池性能实验结果,分析了轻度HEV用镍氢电池在不同SOC情况下不同充电电流的最高温度、温差变化趋势.结合混合动力汽车镍氢电池实际工作情况和电池快速充电理论,基于马斯定律提出了适合混合动力汽车再生制动的镍氢电池恒流分阶段充电控制策略,并进行了HEV镍氢电池快速充电过程的建模与仿真.通过对比该快速充电策略、保护电压恒流充电策略和40 A恒流充电策略下的仿真结果,验证了所提出的电池分阶段恒流充电控制策略的正确性和可行性.  相似文献   

14.
探讨将蓄电池充电、快速充电、逆变放电及蓄电池故障诊断功能集为一体的结构方案,重点阐述对微机系统的总体构思,变结构的数字控制算法,有源逆变放电以及快速充电的机理.实验结果表明,采用多微机控制技术,在一套功率变流装置实现蓄电池充、放电等多种功能是可行、有效的.  相似文献   

15.
锂离子动力电池充放电特性的试验研究   总被引:8,自引:1,他引:8  
为了解锂离子动力电池的工作特性,评价其在电动车辆上的使用性能,对锂离子动力电池进行了性能测试.基于实验结果,给出了锂离子动力电池的工作电压、工作电压下降速率和温升特性曲线.对锂离子动力电池的工作特性进行了分析;对各单体电池间的一致性对电池组性能和寿命的影响进行了分析评价;对电池的使用规范提出了建议.分析表明:锂离子动力电池适合于电动车辆使用,但电池单体间的一致性还待进一步改善和提高.  相似文献   

16.
通过现场测试,明确了蓄电池充电区域氢气浓度分布规律.通过WBS-RBS分析方法,得出蓄电池充电区域氢气火灾爆炸事故风险事件耦合矩阵,以此为依据得到氢气火灾爆炸事故故障树,将故障树转化为贝叶斯网络,使用GeNIe软件计算蓄电池充电区域氢气爆炸事故发生概率为2.688e-4.通过贝叶斯网络双向推导功能,计算氢气火灾爆炸事故发生条件下基本事件的后验概率,从而分析出导致事故发生的安全技术或管理的薄弱环节为人体静电、操作工人抽烟、金属部件碰撞、蓄电池过充、蓄电池破裂和机械排风装置故障,并提出了相应的对策措施,降低了蓄电池充电区域发生氢气火灾爆炸事故的风险.  相似文献   

17.
随着电动汽车数量不断增加,大量电动汽车的无序充电行为会导致电网过载和电池寿命损耗。虽然当前已有很多研究关注电动汽车的有序充电行为,但如何在大规模有序充电过程中实现最大化车主便捷性同时减少电池寿命损耗尚未被研究。研究关注充电便捷性和减少电池损坏的充电服务调度优化对充电站充电服务质量和用户满意度提升具有重要意义。笔者提出一个实时充电服务调度策略来协调大量电动汽车的充电行为,以实现最大化车主便捷性同时降低电池损耗。为减少充电过程中信息直接交换造成隐私泄露,同时降低算法计算复杂度,基于交替方向多乘子(ADMM,alternating direction method of multipliers)的分布式算法被提出。大量实验表明所提算法比已有算法有显著提升,能减少33.0%的电池寿命损耗和18.3%的电费支出。  相似文献   

18.
智能化电池充电装置的研究   总被引:7,自引:1,他引:7  
利用智能化充电装置、准恒压充电模式,在电池充电时,加入温度补偿系统和电压检测部件,采用模糊PID调节,较好地解决了三段式充电引起的电池损坏现象,延长了电池的使用寿命。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号