首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 83 毫秒
1.
采用溶胶—凝胶法制备了纳米级Li2SO4+Li2WO4+Al2O3复合质子传导膜,研究了不同H2S气体浓度、流率和操作温度对结构为H2S、(复合MoS2阳极催化剂)/ 复合质子传导膜/(复合NiO阴极催化剂)、空气的燃料电池电化学性能影响。燃料电池的性能与通入阳极侧的H2S浓度和流率有关,H2S浓度和流率增加,提高了阳极侧气体扩散速率和电化学活性组分,使燃料电池的开路电压、输出电流与功率密度提高,电化学性能变好。即使气体中的H2S浓度低达5%时,该气体也可作为电池的燃料并用来发电。操作温度增加,质子传导膜的电传导率和电化学反应速率增加,电池的输出电流与功率密度提高。比较了MoS2与复合MoS2催化剂的性能,复合MoS2催化剂比MoS2催化剂具有更好的性能和化学稳定性。当采用纯H2S作为燃料,通入阳极和阴极侧的H2S和空气的流率分别为35mlmin-1和100mlmin-1,操作温度为650、700和750oC时,燃料电池产生的最大功率密度为12.4、52.9和130 mWcm-2、最大电流密度为45、281和350 mAcm-2。  相似文献   

2.
3.
制备和研究了具有H2S,(MoS2 NiS Ag)/Li2SO4 Al2O3/(NiO Ag),air结构的H2S固体氧化物燃料电池用于产生电能和脱除燃料气体中的H2S.电池在600~650 ℃和大气压下运行.燃料电池的电化学性能受电解膜的组成,电极材料和操作温度影响.掺杂了Al2O3 和少量H3BO4的Li2SO4质子传导膜可以提高膜的机械强度和性能,改善膜的致密性和电池的性能.适宜的Li2SO4 和 Al2O3 比为3~4∶1(质量比), 适宜掺杂H3BO4的量为2%~5%(w).掺杂了Ag粉和电解质的金属硫化物复合阳极在H2S气流下很稳定和性能很好, 掺杂了Ag粉和电解质的的NiO复合阴极在去除H2S时性能优于Pt电极催化剂.在650 ℃电池的最大输出功率密度为70 mW·cm -2,最大电流密度为180 mA·cm -2.然而,电池长期运行的稳定性实验仍有待研究.  相似文献   

4.
制备了以Li2SO4为基体的复合质子传导膜。采用电化学阻抗波谱分析法(EIS)研究了掺杂不同组分如Li2WO4、Na2SO4和Al2O3、以及掺杂不同的比例时制备不同厚度的复合质子传导膜的离子(电)传导率。在Li2SO4中掺杂适宜比例的Li2WO4或Na2SO4可提高膜的离子传导率,掺杂Li2WO4比掺杂Na2SO4制备的复合膜具有更高的离子传导率和较佳的性能。虽然掺杂Al2O3会稍微降低膜的质子传导率,但确可以提高膜的机械性能。膜的厚度减少,其离子传导率增加,但膜太薄,气体容易从膜一侧渗透到另一侧(crossover)。采用扫描电镜(SEM)对复合膜进行了表征,掺杂Li2WO4制备的复合膜结构较致密和紧凑、性能较好。实验结果表明,适宜的膜厚为0.8mm,由Li2SO4、Li2WO4和Al2O3制备的复合膜适宜的组成为75wt%(90mol%Li2SO4+10mol%Li2WO4)+25wt%Al2O3,其离子传导率在600、650、700和750℃时高达0.16、0.38、0.46和0.52Scm1。研究了以H2S为燃料、复合Mo-Ni-S为阳极、复合Li2SO4为质子传导膜、复合NiO为阴极、空气作为氧化剂的单电池的电化学性能,Li2SO4+Li2WO4+Al2O3复合膜的电池性能较优。  相似文献   

5.
制备了以Li2SO4为基体、Al2O3为填充物的复合质子传导膜.采用电化学阻抗波谱分析法(EIS)研究了掺杂不同组分(Li2WO4或Na2SO4)以及掺杂不同比例时制备的不同厚度的复合质子传导膜的离子(电)传导率.分析结果表明,在Li2SO4中掺杂一定比例的Li2WO4或Na2SO4均可提高膜的离子传导率,Li2WO4对复合膜性能的影响优于Na2SO4.扫描电镜(SEM)分析显示,掺杂Li2WO4的复合膜结构更加致密和紧凑.实验结果表明,由Li2SO4、Li2WO4和Al2O3制备的复合膜的适宜组成为75%Li2SO4/Li2WO4混合物(Li2SO4与Li2WO4摩尔比为9: 1) 25%Al2O3,其离子传导率在600,650,700和750 ℃时分别高达0.16,0.38,0.46和0.52 S/cm,适宜的膜厚为0.8 mm.文中还研究了以H2S为燃料、复合Mo-Ni-S为阳极、复合Li2SO4为质子传导膜、复合NiO为阴极、空气为氧化剂的单电池的电化学性能,发现Li2SO4 Li2WO4 Al2O3复合膜的电化学性能较优.  相似文献   

6.
设计并组装了燃料电池寿命测试系统,对单个质子交换膜燃料电池(单电池)进行了各种寿命测试.在单电池运行过程中记录电池的工作曲线及性能曲线.了解电池的性能变化及运行状况.通过XRD、TEM和SEM等手段对运行时间为200,500,700,l000和2000的三合一膜电极(MEA)中的阴、阳极催化剂分别进行了表征,获得催化剂晶态、表面形态及颗粒大小等变化信息.考察催化剂晶胞参数、颗粒大小等变化对电池寿命及性能的影响.  相似文献   

7.
开发了一种制备纳米复合Li_2SO_4质子传导电解质和膜电极组装(MEA)的工艺.与传统的丝网涂布工艺不同,新的制备工艺是将阳极、阴极催化剂与纳米复合电解质同时一次压制成MEA.这就使得MEA的设计具有某些结构上的特点,由于膜厚减少和电极与电解质之间的接触良好,可以降低电解质与电极之间的欧姆电阻,提高其机械和导电性能,增加膜的质子传导性以及改善电池的性能.用电子扫描电镜(SEM)和电化学阻抗分析技术对电解质薄膜进行了表征,结果表明,纳米复合材料改善了MEA的总体性能.由于膜的致密性和不透气性,不会发生气体穿透过膜的现象.MEA在H_2S环境中很稳定.电池结构为H_2S,(MoS_2/NiS Ag 电解质量 淀粉) /Li_2SO_4 Al_2O_3/(NiO Ag 电解质量 淀粉),空气、MEA厚为0.8mm、电解质组成为65% Li_2SO_4 35% Al_2O_3的单电池在680℃时产生最大功率密度为130mW/cm~2,相应的电流密度为200mW/cm~2.  相似文献   

8.
利用耐受性曲线、极化曲线、循环伏安等电化学测试手段,分别考察了H2中ψ(H2S)分别为0.25×10-6、0.5×10-6、0.75×10-6、1.0×10-6、1.25×10-6、1.5×10-6以及5.0×10-6时对质子交换膜燃料电池(PEMFC)性能的影响.分析PEMFC性能达到相同的下降程度时通入H2S的量与其浓度之间的关系,通过拟合计算,得出H2中ψ(H2S)的合理控制范围为小于等于0.2×10-6.通过比较不同浓度H2S影响下的耐受性曲线,可以看出H2S在Pt表面的吸附具有累积性,即使ψ(H2S)低于0.2×10-6,其长时间的影响也会造成电池性能的下降.因此,如果单从控制H2中H2S浓度的角度来维持电池性能并不理想,还需要定期对电池性能进行恢复.比较了循环伏安法和空气吹扫法对电池性能的影响,这两种方法可分别使电池的性能恢复到初始状态的97%和95%,但是空气吹扫法更易于在车载条件下实现.  相似文献   

9.
环境条件对质子交换膜燃料电池性能的影响   总被引:9,自引:0,他引:9  
研究了不同环境温度、湿度条件下小功率质子交换膜燃料电池(PEMFC)堆的性能,结果表明:环境温度、湿度对PEMFC堆的性能有很大影响,随着相对湿度的增加,PEMFC堆的最大输出功率显著提高;当相对湿度小于30%或者当环境温度降至10℃(2以下时,PEMPC的性能严重下降。  相似文献   

10.
11.
研究了在一个大气压和750~850℃下,具有H2S、(MoS2 NiS Ag)/YSZ/Pt和空气结构的固体氧化物燃料电池的电化学性能,发现升温有助于增强电解质的离子传导性,使电池性能变好.在750℃下,阳极通入H2S、阴极通入空气时,电池的最大电流密度和最大功率密度分别达800mA/cm^2和84mW/cm^2;在850℃下,电池的最大电流密度和功率密度分别达1750mA/cm^2和200mW/cm^2.  相似文献   

12.
研究了基于三相边界层理论设计的中温质子传导膜H2S燃料电池的阳极与阴极催化剂.考察了3种阳极催化剂Pt、MoS2及复合金属硫化物(MoS2/N iS)电化学氧化硫化氢的性能和在硫化氢环境下的化学稳定性,发现MoS2和复合MoS2/N iS催化剂比Pt具有更好的催化活性,但MoS2在温度超过450℃时会升华,而含有Mo和过渡金属N i的复合MoS2/N iS催化剂在操作条件下很稳定.文中还研究了两种阴极催化剂Pt与复合N iO催化剂的电化学性能,发现复合N iO催化剂比Pt电极具有更低的过电位和更好的电化学性能;虽然复合电极的导电性比Pt差些,但是这一问题可以通过在电极中掺杂10%的Ag粉解决.由H2S、(MoS2 N iS Ag 电解质 淀粉)/Li2SO4-A l2O3/(N iO Ag 电解质 淀粉)、空气构成的燃料电池在101.13 kPa和600~680℃下的电化学特性研究表明,电池最大输出电流密度和功率密度在680℃时分别达到240mA/cm2和70mW/cm2.  相似文献   

13.
较系统地考察了原料合成气中H_2S含量对钼硫基催化剂K_2MoS_4/SiO_2和MoS_2/K_2CO_3/SiO_2上合成气转化活性和选择性的影响,首次发现,当原料合成气H_2S含量达到1.6%时,甲硫醇成为占绝对优势的主导产物,选择性达96C%,根据这类催化剂活性相(位)组成、结构的已有谱学表征结果,探讨了甲硫醇的生成机理。  相似文献   

14.
考察了聚苯胺(PANI)修饰阴极对沉积型微生物燃料电池(SMFC)产电性能和有机质去除率的影响。衰减全反射红外光谱(ATR)表征证明修饰电极表面PANI为导电的质子掺杂状态。电化学阻抗谱(EIS)测试揭示,PANI修饰电极的欧姆内阻(R‰)和电荷转移内阻(R。)明显低于空白电极,且随着PANI负载量的增大逐渐减小。以PANI修饰阴极序批式运行沉积型微生物燃料电池(SMFC),可以显著提高SMFC的产电性能以及沉积物中有机质去除率。与空白阴极SMFC体系相比,PANI—110修饰阴极SMFC的最大功率密度增大了64倍,表观内阻减小了12倍,SCOD去除率由12.4%增大到40.3%。  相似文献   

15.
利用H2O2在24Onm处有吸收光谱的特性,建立了快速测定植物活细胞产生H2O2的方法.同时利用该技术进一步定量检测了ABA诱导蚕豆气孔保卫细胞H2O2的产生.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号