共查询到14条相似文献,搜索用时 93 毫秒
1.
目前知识图谱实体对齐的主流方法是通过图神经网络学习知识图谱的嵌入表示,并测量实体嵌入之间的相似性实现实体的对齐.很多实体对齐方法只考虑知识图谱的结构信息和关系信息,却常常忽略了属性信息.针对上述问题,提出了一种融合属性嵌入的实体对齐方法:融合属性信息的精简关系感知双图卷积网络模型.首先,基于关系感知双图卷积网络的注意力机制提取知识图谱的关系信息;然后,利用带高速门的图卷积网络获取属性信息;最后,融合二者的嵌入信息以实现更高准确率的实体对齐.在3个跨语言数据集上的实验结果表明,该方法通过融合知识图谱属性信息增强了实体表示能力,在3个数据集上Hits@1值相比原模型分别增长了6.42%、4.59%和1.98%,对齐效果明显优于目前主流的实体对齐方法. 相似文献
2.
与现有的根据知识图谱的结构信息或实体属性特征进行相似度匹配的实体对齐的方法不同,提出了一种基于表示学习的知识图谱实体对齐方法.首先,在低维向量空间下,通过机器学习方法学得实体和关系的语义表示,这种表示形式蕴含了知识图谱的内在结构信息及实体属性特征;其次,将人工标注的实体对作为先验知识,学习知识图谱间实体对的映射关系.经实验验证表明:与基于特征匹配的方法SiGMa相比,本文方法能够有效提高知识图谱实体对齐的精确率,同时保持较高的F1值. 相似文献
3.
为了解决多来源医疗知识库融合过程中常见的知识冗余问题,基于综合多种注意力机制和图卷积神经网络的MuGNN模型对互联网医疗知识融合的效果进行了研究.以乳腺癌疾病为例,首先构建了基于不同医疗网站的疾病实体关系库,然后利用MuGNN模型完成了实体对齐,同时与JAPE模型和GCN-Align模型的实体对齐效果进行了对比,最后对基于不同医疗网站的疾病实体关系库进行知识融合并通过Neo4j图数据库对融合后的知识图谱进行可视化处理.结果表明,与JAPE模型和GCN-Align模型相比,MuGNN模型的实体对齐效果更好.利用综合多种注意力机制和图卷积神经网络的MuGNN模型对互联网医疗知识进行融合,有助于提升多来源互联网医疗知识的融合效果,有助于多源知识图谱的构建与补全,有助于提供更优质的知识服务. 相似文献
4.
针对多数据源的融合应用,构建了基于多数据源的知识图谱.首先,对不同领域内的数据源构建相应本体库,并将不同本体库通过数据融合映射到全局本体库;然后,利用实体对齐和实体链接方法进行知识获取和融合;最后,搭建知识图谱应用平台,提供查询和统计等操作.在实体对齐方面,利用传统的基于相似性传播实体对齐方法,获得良好的实体对齐效果;在实体链接方面,提出了基于约束嵌入转换的预测推理方法,实验结果表明,在预测准确率上取得较好的结果. 相似文献
5.
基于微调BERT(bidirectional encoder representation from transformers)模型的实体对齐方法,对齐百度百科、互动百科的多模态资源。首先,通过下游的分类任务微调BERT模型,提升模型预测正确结果的能力;其次,针对数据集正负样本比例不均衡的问题,提出负采样策略,提升模型的准确程度与泛化性能,实验结果证明分类任务性能明显提升,AUC(area under the curve)值提升0.29;最后,将优化后的模型应用于实体对齐任务中,利用输出概率进行排序并预测最终对齐的实体对,实验结果优于基于相似度计算的实体对齐方法,F1值达到95.9%。 相似文献
6.
提出一种融合实体信息的图卷积神经网络模型(ETGCN),用于短文本分类.首先,使用实体链接工具抽取短文本中的实体;然后,利用图卷积神经网络对文档、实体和单词进行建模,丰富文本的潜在语义特征;将学习到的单词节点表示与BERT词嵌入进行拼接,通过双向长短期记忆网络,进一步挖掘文本上下文语义特征,再与图神经网络模型得到的文本特征进行融合,用于分类.实验结果表明,该模型在数据集AGNews、R52和MR上的分类准确率分别为88.38%、93.87%和82.87%,优于大部分主流的基线方法. 相似文献
7.
材料领域的文献中蕴含着丰富的知识, 利用机器学习和自然语言处理等手段对文献进行数据挖掘是研究热点. 命名实体识别(named entity recognition, NER)是高效利用挖掘和抽取数据中信息的首要步骤. 为了解决现有实体识别方法中存在的向量表示无法解决一词多义、模型常提取上下文特征而忽略全局特征等问题, 提出了一种基于上下文词汇匹配和图卷积命名实体识别方法. 该方法首先利用 XLNet 获取文本的上下文动态特征, 其次利用长短期记忆网络并结合文本上下文匹配词汇的图卷积神经网络(graph convolutional network, GCN)模型分别获取上下文特征与全局特征, 最终经过条件随机场输出标签序列. 2 种不同语料对模型进行验证的结果表明, 该方法在材料数据集上的精确率、召回率和 F1 值分别达到 90.05%、88.67% 和 89.36%, 可有效提升命名实体识别的准确率. 相似文献
8.
9.
知识图谱可以给推荐系统提供丰富的、结构化的信息,从而提高推荐准确性.最近的技术趋势是基于传播的方法设计端到端的模型,但有的基于传播的方法无法捕获项目的高阶协作信号.一般图卷积网络中包含的最常见形式是特征转换、非线性激活和邻域聚合,然而,经验表明,特征转换和非线性激活对协同过滤推荐不一定有积极的影响,更糟糕的是,它们可能会降低推荐性能,使训练更加困难.针对以上问题,提出基于知识图谱的轻量级图卷积网络推荐模型.首先,从实体邻居中抽取样本作为感受野,将知识图谱中的实体通过多次迭代嵌入传播来获取高阶邻域信息.感受野结合邻域信息和可能存在的偏差来计算实体表示,还可以扩展到多跳以模拟高阶连通性并捕获用户潜在的远距离兴趣.其次,使用邻域聚合以预测用户和项目之间的评分,这不仅简化了模型设计,还提高了模型的有效性和准确度.最后,在电影、书籍和音乐推荐这三个数据集中应用提出的模型,实验结果表明,提出的方法优于其他推荐基线. 相似文献
10.
在主题深度表示学习的基础上,该文提出了一种融合双语词嵌入的主题对齐模型(topic alignment model, TAM),通过双语词嵌入扩充语义对齐词汇词典,在传统双语主题模型基础上设计辅助分布用于改进不同词分布的语义共享,以此改善跨语言和跨领域情境下的主题对齐效果;提出了2种新的指标,即双语主题相似度(bilingual topic similarity, BTS)和双语对齐相似度(bilingual alignment similarity, BAS),用于评价辅助分布对齐的效果。相比传统的对齐模型MCTA, TAM在跨语言主题对齐任务中双语对齐相似度提升了约1.5%,在跨领域主题对齐任务中F1值提升了约10%。研究结果对于改进跨语言和跨领域信息处理具有重要意义。 相似文献
11.
有效减少网络能耗,从而提高整体网络寿命是无线传感网领域中的关键问题,LEACH和DEBR等分簇路由算法可以初步提高网络寿命和网络延展性.研究了簇头选择、簇的形成和数据路由3个阶段,提出了一种基于能量均衡的分布式聚类均衡路由算法,通过传感节点的剩余能量、邻居个数以及簇头能耗的混合权重来选择簇头和分簇,考虑每条路径的消耗来选择最佳路径,有效改进了LEACH随机选择簇头节点和DEBR传送延迟导致的网络分割和能耗不均等问题.仿真结果表明,该算法有效平衡并降低了节点能耗,使得网络中生存节点数在相同周期内有较大提升,从而延长了整个网络的生命周期. 相似文献
12.
在分布式检测系统中,无线传感信道普遍存在未知的噪声,而基于最大似然函数的融合在有未知的噪声时性能表现较差.为了提高信号检测的准确性,提出一种基于极大极小方法设置的鲁棒融合规则.该规则采用最大似然函数的融合算法的结构形式和Huber极小极大的方法,得到虚警概率和检测概率表达式,适用于信道噪声为非衰减噪声分布、有界方差的噪声分布和混合高斯噪声分布.对多传感器并行分布式检测系统的仿真与分析,表明了该融合算法可提高信号检测的准确性,同时也具有一定的鲁棒性. 相似文献
13.
利用简化脉冲耦合神经网络(S-PCNN),提出一种处理椒盐噪声污染的人脸识别新方法.首先采用S-PCNN的相似群神经元同步发放脉冲特性对原图像进行噪声检测,然后结合数学形态学实现对噪声点的消除,最后使用S-PCNN的时间序列(OTS)和欧氏距离进行人脸识别.通过计算机仿真实验表明所提算法是有效的. 相似文献
14.
文章以维吾尔文为对象,提出了一种汉维对齐的维文语料库获取方法,通过对照汉维特点,首先对维文进行词干切分,并在此基础上借助词干表和词频表进行词性标注,然后对汉维进行对齐,从而实现汉维双语语料库的获取,对维文及其他少数民族语言的分析及研究提供一种可行的方法. 相似文献