首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
以环己烯与乙酸为原料,在大孔苯乙烯阳离子交换树脂D006的催化下,通过烯烃酯化反应合成乙酸环己酯。对合成条件进行优化,并考察了树脂催化剂的稳定性。得到较佳的工艺条件为:n(环己烯):n(乙酸)=1:3,反应温度90℃,树脂用量2%(相对于环己烯和乙酸总质量),反应时间5h,搅拌速率300r/min,环己烯转化率94.5%,乙酸环己酯收率83%。催化剂连续使用10次,乙酸环己酯选择性维持在94%左右。  相似文献   

2.
在以丙酮为溶剂、以V2O5/SiO2为催化剂、8-羟基喹啉为助剂的催化条件下,以过氧化氢水溶液为氧化剂,对环己烯催化氧化制备环己烯酮的催化反应体系进行了研究。考察了V2O5的负载量以及8-羟基喹啉的用量及反应温度对环己烯氧化反应的影响,发现适当的负载量有利于V2O5催化性能的提高。结果表明,当V2O5负载量(质量分数)为5%、催化剂的量和8-羟基喹啉的质量相等、反应温度为30℃时环己烯的转化率和环己烯酮的选择性较好。这源于V2O5高度分散于SiO2载体上,增大了活性组分V2O5的表面积,从而增加了其活性中心的个数及活性组分与反应物的接触面积,从而增加了催化活性。  相似文献   

3.
采用并流沉淀法制备纳米Ru-Zn催化剂,并考察了反应温度和预处理等反应条件对Ru-Zn催化剂催化苯选择性加氢制环己烯性能的影响.结果表明,制备的Ru-Zn催化剂Zn与Ru的物质的量比为0.15,催化剂粒径集中分布在3.4 nm,比表面积为56 m~2/g. Ru主要以金属Ru存在,Zn主要以ZnO或Zn(OH)_2存在.随反应温度的升高,Ru-Zn催化剂的活性逐渐升高,环己烯的选择性先升高后降低. Ru-Zn催化剂催化苯选择加氢制环己烯的最佳温度为140℃.反应物苯的反应级数为1,苯选择加氢反应的活化能为65.20 kJ/mol.随预处理时间的增加,Ru-Zn催化剂的活性先逐渐降低后升高,环己烯选择性先升高后降低.预处理12 h的Ru-Zn催化剂表面最适宜生成环己烯,环己烯收率达到了56.4%.而且Ru-Zn催化剂具有良好的重复使用性能和稳定性.  相似文献   

4.
以苯选择性加氢制环己烯为模型反应,考察了Ru-Zn/ZrO_2催化剂制备过程中还原方式对催化剂催化性能的影响.运用TEM、SEM、BET等技术对催化剂进行了表征.评价结果表明,采用高压液相还原制备的RuZn/ZrO_2-3催化剂在苯选择加氢制环己烯反应中表现出高催化性能,当苯转化率为41%时,环己烯选择性达到了83.8%.TEM、SEM结果表明催化剂上Ru微晶呈高分散,有利于苯转化率的提高.BET比表面积25 m~2/g,RuZn/ZrO_2-3催化剂最可几孔径分布范围20~50 nm,有利于环己烯选择性的提高.  相似文献   

5.
采用共沉淀法制备了晶相单一、结晶度良好的钴铝类水滑石,借助XRD、FT-IR对其物化性能进行了表征;在乙酸存在下,将其应用于苯甲醛液相空气氧化合成苯甲酸的反应当中,详细考察了搅拌速度、乙酸用量、反应温度及时间、催化剂组成结构及其用量等因素对该反应活性及选择性的影响。实验结果表明:CoAl-HTLcs在乙酸为介质的条件下能够很好地催化氧化苯甲醛至苯甲酸。在敞开体系下,当反应温度为65℃,反应时间为45 min,实验搅拌速度为800 r/min,V(苯甲醛)∶V(乙酸)=5∶15,CoAl类水滑石(n(Co)/n(Al)=2)催化剂用量为0.1 g时,苯甲酸的选择性为100%,苯甲醛的转化率近100%。  相似文献   

6.
以30%H2O2溶液为氧化剂,以六配位水和三配位水的铋钨杂多酸四丁基铵盐([(C4H9)4N]10[(MⅡ(H2O)3)2(WO2)2(BiW9O33)2]和[(C4H9)4N]12[(MⅡ(H2O))3(BiW9O33)2](M=Ni,Mn,Co))为催化剂,催化了环己烯环氧化反应,探索了杂多酸催化剂中配位水的数量对催化剂性能的影响.结果表明:H2O2(30%)与环己烯的物质的量比为3∶1,反应温度为80℃,反应时间为6 h,六配位水的铋钨杂多酸四丁基铵盐具有更高的催化活性.底物环己烯的转化率为58.9%,产物环氧环己烷的选择性大于等于99%.同时还对杂多酸催化环氧化环己烯的机理做了初步的探讨.  相似文献   

7.
以氯磷酸二乙酯、3-环己烯-1-甲醇为原料,首先合成3-环己烯-1-甲酯缩磷酸二乙酯(CDP),然后在CDP的基础上合成3-氧化环己烯-1-甲酯缩磷酸二乙酯(OCDP).通过正交实验找出两步反应的较优条件.当反应温度为80℃,n(氯磷酸二乙酯)∶n(3-环己烯-1-甲醇)∶n(三乙胺)=1∶1.5∶1,反应时间为36h时,CDP收率可达80.6%.当反应温度为80℃,n(CDP)∶n(过氧单磺酸钾)∶n(四丁基溴化铵)=1∶2∶1,反应时间为36h时,最终产物OCDP的收率为87.6%.通过红外光谱以及核磁共振分别对两步产物的结构进行表征.  相似文献   

8.
通过1-己烯和三聚甲醛模拟体系考察Prins缩合反应降烯烃的性能,比较大孔阳离子交换树脂Amberlyst-35、DFHS-6、分子筛H-Y和负载型离子液体BsMIMHSO 4/sg的催化活性,选择Amberlyst-35为该反应的催化剂,研究甲醛来源、催化剂用量、1-己烯/三聚甲醛物质的量配比、反应温度、反应压力以及反应时间对反应的影响。结果表明:最佳工艺条件为催化剂用量为原料的4%,1-己烯/三聚甲醛物质的量配比为1∶1.5,反应温度105℃,反应压力1.5 MPa,反应时间4 h;在最佳工艺条件下,用质量比为1∶7的三聚甲醛与FCC汽油反应,可使FCC汽油中烯烃质量分数从25.1%降至12.2%,且反应后产品的辛烷值略有下降。  相似文献   

9.
利用2,6-双(2-苯并咪唑)吡啶(bbp)在氯甲基化交联聚苯乙烯(CPS)微球上进行烷基化反应,形成改性微球CPS-bbp,然后与Cu~(2+)盐配位,制得固体配合物CPS-Cu(Ⅱ)-bbp,分别采用核磁、红外、紫外-可见吸收光谱、扫描电子显微镜(SEM)/X线能谱(EDS)、热重分析对配合物的结构与形貌进行表征和观察.最后,将配合物作为催化剂,分别研究其在氧化苯甲醇、苯乙烯和环己烯氧化反应中的催化性能.结果表明,在以叔丁基过氧化氢为氧化剂,CPS-Cu(Ⅱ)-bbp为催化剂条件下,苯甲醇氧化产物只有苯甲醛,其转化率可达93.7%;苯乙烯的主要氧化产物为氧化苯乙烯,其转化率为89.1%,产物选择性为60.7%;氧化环己烯的主要氧化产物为α-环己烯酮,转化率为67.9%,选择性达96.7%.  相似文献   

10.
采用沉积沉淀法制备了Co/MMT(蒙脱土)催化剂,用于催化顺酐加氢制备丁二酸酐反应.通过正交实验,考察了底物与催化剂的物质的量之比(s/c)、反应温度、氢气压力、反应时间等条件对加氢反应的影响.结果表明,最优的反应条件为:s/c=100、反应温度120℃、氢气压力1.5 MPa、反应时间5 h,在此条件下,顺酐转化率达92.0%,丁二酸酐选择性100%.  相似文献   

11.
Ni/海泡石催化苯选择加氢为环己烯研究   总被引:6,自引:0,他引:6  
研制和采用Ni/海泡石为催化剂,使苯气固相选择加氢为环己烯,分析了此过程的热力学和动力学特性,考察了液苯空速、氢本比、反应和修饰剂对过程的影响规律,确定了苯部分加氢制环己烯的优化条件,修饰剂对选择性中氢有重要影响,以水为修饰剂时,取得卖座经率80%和环己烯选择性37.9%的结果。  相似文献   

12.
采用沉淀法制备了Ru-Fe/ZrO2催化剂,考察了Fe/Ru、Ru的不同负载量和沉淀温度等因素对催化剂性能的影响,并对催化剂的循环使用情况进行了研究。对催化剂进行性能测试,在苯的转化率为34.70%时,环己烯选择性可达77.52%。XRD表征显示催化剂为晶体特征,活性组分在载体表面高度分散。  相似文献   

13.
沸石催化剂上苯与乙烯液相烷基化反应的研究   总被引:4,自引:0,他引:4  
采用微型等温积分反应器,对改性β沸石催化剂上苯与乙烯液相烷基化反应进行了实验研究。通过考察反应温度、苯烯摩尔比和乙烯质量空速对催化剂性能的影响,获得了如下适宜工艺条件:反应温度190~220℃ ,苯烯摩尔比6~8,乙烯质量空速≤2h-1。在此条件下,乙烯转化率在99.0%以上,乙苯选择性可达93%,乙基化选择性不低于99.0%。苯与乙烯液相烷基化稳定性实验表明,乙烯转化率和乙苯选择性未出现随反应时间延长而降低的现象,表明该沸石催化剂具有良好的活性稳定性.在所考察实验范围内,基本上检测不到二甲苯,其它烷基化副产物的含量也处于极低水平。  相似文献   

14.
氯铝酸盐离子液体催化苯与丙烯的烷基化反应   总被引:1,自引:0,他引:1  
以盐酸三乙胺季铵盐和AlCl3形成的氯铝酸盐离子液体为催化剂,实验考察了离子液体中AlCl3物质的量分数、催化剂用量、苯烯物质的量比、反应温度以及反应时间对苯与丙烯烷基化反应的影响。结果表明,增加离子液体中AlCl3物质的量分数、催化剂用量、反应时间和苯烯物质的量比,降低反应温度均有利于丙烯转化率和异丙苯选择性的提高。在优化条件下,即离子液体中AlCl3物质的量分数为66.7%、催化剂用量为苯的质量的10%、苯烯物质的量比为10、反应温度为40℃及常压反应条件下, 10min时丙烯转化率和异丙苯选择性均可达到97.6%。离子液体催化剂重复使用8次后仍能基本保持新催化剂的性能,但如何增加循环使用的次数尚需进一步研究。  相似文献   

15.
类水滑石CuMgAl的制备、表征及其催化性能的研究   总被引:1,自引:0,他引:1  
针对共沉淀法制备类水滑石难于操作、易混入碱金属离子等缺点,采用水热和尿素水解法制备了三元类水滑石CuMgAl(Cu+Mg/Al=3,Cu/Mg=5.0,3.0,1.0,0.33),并将合成的类水滑石用于苯羟基化反应;采用X射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)、扫描电镜(SEM)等手段对类水滑石进行表征,以CuMgAl31作为催化剂,考察了反应时间、反应温度、溶剂及用量、催化剂用量、n(benzene)/n(H2O2)对苯羟化反应的影响.结果表明:与CuMgAl11、CuMgAl21、CuMgAl13催化剂相比,CuMgAl31具有较高的反应活性,反应的最佳条件为:反应时间6h、反应温度65℃、15mL吡啶作为溶剂、10mg催化剂、n(benzene)/n(H2O2)=3.0时,苯的转化率为5.5%,苯酚的选择性几乎为100%.  相似文献   

16.
以过氧化氢为氧化剂,自制的十六烷基吡啶过氧磷钨酸为催化剂催化环己烯合成环氧环己烷,根据釜式反应器反应的最佳时间确定了管式反应器的管长,考察了反应温度、环己烯与H2O2物质的量比、反应溶液的pH和催化剂用量对产物收率的影响,并对这些条件进行了优化。实验结果表明,管式反应器最佳条件为反应温度50℃,反应时间30 min,投料比n(环己烯):n(H2O2):n(催化剂):n(氯仿)=1:0.75:0.000 25:2,pH=3,此条件下环氧环己烷的收率可达55.24%。同样实验条件下釜式反应器内环氧环己烷收率为44.42%。  相似文献   

17.
 为了合成高效的固体催化剂,离子液体被引入到介孔分子筛中。采用水热合成法制备了Al-MCM-41介孔分子筛,并浸渍离子液体制备出一种固载化催化剂。通过FT-IR、TG、N2吸附-脱附等方法进行表征,分析其晶型结构,成功将离子液体固载到Al-MCM-41介孔分子筛上。通过对工艺条件的考察和正交实验设计,确定了最佳反应条件。当苯烯摩尔比为8:1、反应温度为200℃、空速1.5h-1、压力3MPa时,反应的转化率和选择性综合达到最佳,Al-MCM-41固载离子液体催化剂的烯烃转化率为95.32%。  相似文献   

18.
四氯化碳催化加氢制氯仿的实验研究   总被引:7,自引:1,他引:6  
采用浸渍法制备了Pt/活性碳毡催化剂,并在自制的高压反应釜上考察了该催化剂对四氯化碳加氢制氯仿反应的性能。实验考察了温度、压力、Pt负载量以及溶剂对四氯化碳转化率和氯仿选择性的影响,并对实验结果进行了简要讨论。在实验范围内的最佳反应条件下,即反应温度393K,氢气压力4MPa,催化剂中Pt的质量分数为0.8% ,反应时间为22h时,四氯化碳的转化率和氯仿的选择性均可达到90%以上。  相似文献   

19.
Zn对苯选择加氢制环己烯Ru催化剂性能的影响   总被引:3,自引:0,他引:3  
采用共沉淀法制备了苯选择加氢制环己烯无负载Ru-Zn催化剂.Ru催化剂中Zn的引入,有利于降低苯的转化率和提高环己烯的选择性;Zn/Ru摩尔分数比对催化性能有明显的影响,当x(Zn)/x(Ru)=0.08时,环己烯的收率达49.1%.利用XRD和H2-TPR对其结构进行了表征,结果表明,Ru催化剂中添加Zn后,当Zn含量低时,Ru和Zn形成了固溶体;随着Zn含量的增加,Zn物种单独成相,并发现有元素态Zn的存在.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号