首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Persistent and recurrent infections by Plasmodium falciparum malaria parasites result from the ability of the parasite to undergo antigenic variation and evade host immune attack. P. falciparum parasites generate high levels of variability in gene families that comprise virulence determinants of cytoadherence and antigenic variation, such as the var genes. These genes encode the major variable parasite protein (PfEMP-1), and are expressed in a mutually exclusive manner at the surface of the erythrocyte infected by P. falciparum. Here we identify a mechanism by which var gene sequences undergo recombination at frequencies much higher than those expected from homologous crossover events alone. These recombination events occur between subtelomeric regions of heterologous chromosomes, which associate in clusters near the nuclear periphery in asexual blood-stage parasites or in bouquet-like configurations near one pole of the elongated nuclei in sexual parasite forms. We propose that the alignment of var genes in heterologous chromosomes facilitates gene conversion and promotes the diversity of antigenic and adhesive phenotypes. The association of virulence factors with a specific nuclear subcompartment may also have implications for variation during mitotic recombination in asexual blood stages.  相似文献   

2.
Preiser PR  Jarra W  Capiod T  Snounou G 《Nature》1999,398(6728):618-622
The recognition and invasion of host cells are mediated by components of the apical complex of the ookinete, sporozoite and merozoite stages of Plasmodium parasites. The paired rhoptries (organelles involved in host-cell recognition) in the apical complex contain many proteins of as-yet unknown function. In the rodent malaria agent P. yoelii yoelii, a multigene family codes for merozoite rhoptry proteins of relative molecular mass 235,000 (p235 proteins); these proteins are thought to determine the subset of erythrocytes that the parasites invade. Further support for this idea came from the identification of a region in p235 with weak but significant homology to reticulocyte-binding protein-2 of P. vivax and the demonstration that at least one p235 member binds to the erythrocyte surface membrane. Here, using single, micromanipulated P.y.yoelii parasites, we describe a new mechanism of gene expression by which the merozoites originating from a single schizont each express a distinct member of this multigene family. We propose that this new type of clonal phenotypic variation provides the parasite with a survival strategy in the mammalian host; this strategy contributes to the observed chronicity of malarial infections. This phenomenon is genetically and functionally distinct from classical antigenic variation, which is mediated by the var multigene family of P. falciparum.  相似文献   

3.
Recker M  Nee S  Bull PC  Kinyanjui S  Marsh K  Newbold C  Gupta S 《Nature》2004,429(6991):555-558
The malaria parasite Plasmodium falciparum has evolved to prolong its duration of infection by antigenic variation of a major immune target on the surface of the infected red blood cell. This immune evasion strategy depends on the sequential, rather than simultaneous, appearance of immunologically distinct variants. Although the molecular mechanisms by which a single organism switches between variants are known in part, it remains unclear how an entire population of parasites within the host can synchronize expression to avoid rapidly exhausting the variant repertoire. Here we show that short-lived, partially cross-reactive immune responses to parasite-infected erythrocyte surface antigens can produce a cascade of sequentially dominant antigenic variants, each of which is the most immunologically distinct from its preceding types. This model reconciles several previously unexplained and apparently conflicting epidemiological observations by demonstrating that individuals with stronger cross-reactive immune responses can, paradoxically, be more likely to sustain chronic infections. Antigenic variation has always been seen as an adaptation of the parasite to evade host defence: we show that the coordination necessary for the success of this strategy might be provided by the host.  相似文献   

4.
The parasite Plasmodium falciparum is responsible for hundreds of millions of cases of malaria, and kills more than one million African children annually. Here we report an analysis of the genome sequence of P. falciparum clone 3D7. The 23-megabase nuclear genome consists of 14 chromosomes, encodes about 5,300 genes, and is the most (A + T)-rich genome sequenced to date. Genes involved in antigenic variation are concentrated in the subtelomeric regions of the chromosomes. Compared to the genomes of free-living eukaryotic microbes, the genome of this intracellular parasite encodes fewer enzymes and transporters, but a large proportion of genes are devoted to immune evasion and host-parasite interactions. Many nuclear-encoded proteins are targeted to the apicoplast, an organelle involved in fatty-acid and isoprenoid metabolism. The genome sequence provides the foundation for future studies of this organism, and is being exploited in the search for new drugs and vaccines to fight malaria.  相似文献   

5.
L H Perrin  E Ramirez  P H Lambert  P A Miescher 《Nature》1981,289(5795):301-303
Malaria is increasing in incidence and prevalence in most tropical areas and is a major problem for both individuals and communities. Current malaria research is aimed at developing vaccines and, for this, it may be useful to define Plasmodium antigen(s) related to the development of a protective immune response in the host. Monoclonal antibodies have recently been shown to interfere with rodent malaria infection (Plasmodium berghei) at the sporozoite or merozoite stage. We have now raised monoclonal antibodies against single antigenic determinant(s) of Plasmodium falciparum and report that some of them inhibit the growth of erythrocytic forms of P. falciparum in vitro.  相似文献   

6.
Species of malaria parasite that infect rodents have long been used as models for malaria disease research. Here we report the whole-genome shotgun sequence of one species, Plasmodium yoelii yoelii, and comparative studies with the genome of the human malaria parasite Plasmodium falciparum clone 3D7. A synteny map of 2,212 P. y. yoelii contiguous DNA sequences (contigs) aligned to 14 P. falciparum chromosomes reveals marked conservation of gene synteny within the body of each chromosome. Of about 5,300 P. falciparum genes, more than 3,300 P. y. yoelii orthologues of predominantly metabolic function were identified. Over 800 copies of a variant antigen gene located in subtelomeric regions were found. This is the first genome sequence of a model eukaryotic parasite, and it provides insight into the use of such systems in the modelling of Plasmodium biology and disease.  相似文献   

7.
Plasmodium knowlesi is an intracellular malaria parasite whose natural vertebrate host is Macaca fascicularis (the 'kra' monkey); however, it is now increasingly recognized as a significant cause of human malaria, particularly in southeast Asia. Plasmodium knowlesi was the first malaria parasite species in which antigenic variation was demonstrated, and it has a close phylogenetic relationship to Plasmodium vivax, the second most important species of human malaria parasite (reviewed in ref. 4). Despite their relatedness, there are important phenotypic differences between them, such as host blood cell preference, absence of a dormant liver stage or 'hypnozoite' in P. knowlesi, and length of the asexual cycle (reviewed in ref. 4). Here we present an analysis of the P. knowlesi (H strain, Pk1(A+) clone) nuclear genome sequence. This is the first monkey malaria parasite genome to be described, and it provides an opportunity for comparison with the recently completed P. vivax genome and other sequenced Plasmodium genomes. In contrast to other Plasmodium genomes, putative variant antigen families are dispersed throughout the genome and are associated with intrachromosomal telomere repeats. One of these families, the KIRs, contains sequences that collectively match over one-half of the host CD99 extracellular domain, which may represent an unusual form of molecular mimicry.  相似文献   

8.
The complete nucleotide sequence of chromosome 3 of Plasmodium falciparum.   总被引:11,自引:0,他引:11  
Analysis of Plasmodium falciparum chromosome 3, and comparison with chromosome 2, highlights novel features of chromosome organization and gene structure. The sub-telomeric regions of chromosome 3 show a conserved order of features, including repetitive DNA sequences, members of multigene families involved in pathogenesis and antigenic variation, a number of conserved pseudogenes, and several genes of unknown function. A putative centromere has been identified that has a core region of about 2 kilobases with an extremely high (adenine + thymidine) composition and arrays of tandem repeats. We have predicted 215 protein-coding genes and two transfer RNA genes in the 1,060,106-base-pair chromosome sequence. The predicted protein-coding genes can be divided into three main classes: 52.6% are not spliced, 45.1% have a large exon with short additional 5' or 3' exons, and 2.3% have a multiple exon structure more typical of higher eukaryotes.  相似文献   

9.
10.
Singh SK  Hora R  Belrhali H  Chitnis CE  Sharma A 《Nature》2006,439(7077):741-744
Molecular processes that govern pathogenic features of erythrocyte invasion and cytoadherence in malaria are reliant on Plasmodium-specific Duffy-binding-like domains (DBLs). These cysteine-rich modules recognize diverse host cell-surface receptors during pathogenesis. DBLs of parasite erythrocyte-binding proteins mediate invasion, and those from the antigenically variant P. falciparum erythrocyte membrane protein 1 (PfEMP1) have been implicated in cytoadherence. The simian and human malarial parasites, P. knowlesi and P. vivax, invade human erythrocytes exclusively through the host DARC receptor (Duffy antigen receptor for chemokines). Here we present the crystal structure of the P. knowlesi DBL domain (Pkalpha-DBL), which binds to DARC during invasion of human erythrocytes. Pkalpha-DBL retains the overall fold observed in DBLs from P. falciparum erythrocyte-binding antigen (EBA)-175 (ref. 4). Mapping the residues that have previously been implicated in binding highlights a fairly flat but exposed site for DARC recognition in subdomain 2 of Pkalpha-DBL; this is in sharp contrast to receptor recognition by EBA-175 (ref. 4). In Pkalpha-DBL, the residues that contact DARC and the clusters of residues under immune pressure map to opposite surfaces of the DBL, and suggest a possible mechanism for immune evasion by P. vivax. Our comparative structural analysis of Pkalpha-DBL and P. falciparum EBA-175 provides a framework for the understanding of malaria parasite DBLs, and may affect the development of new prophylactic and therapeutic strategies.  相似文献   

11.
Plasmodium falciparum causes malaria infections in its human host. Its wide distribution in tropical countries is a major world health problem. Before a vaccine can be produced, the identification and characterization of parasite antigens is necessary. This can be achieved by the cloning and subsequent analysis of genes coding for parasite antigens. Recently established cDNA banks allow the expression of cDNA derived from the simian parasite Plasmodium knowlesi and P. falciparum in Escherichia coli. Recombinants encoding parasite antigens have been identified by immunodetection in both banks. Two of them contain repetitive units of 11 (ref. 7) or 12 (ref. 5) amino acids. We describe here the construction of an expression bank made directly from randomly generated fragments of P. falciparum genomic DNA. We detect several clones which react strongly with human African immune sera. One clone expresses an antigenic determinant composed of occasionally degenerated repeats of a peptide nonamer.  相似文献   

12.
Protective immune responses against the asexual stages of the human malaria parasite, Plasmodium falciparum, are most probably directed against exposed antigenic determinants on the surface of the free merozoite or the infected red blood cell, and therefore antigens in these locations are candidates for testing as components of a defined molecular vaccine. To facilitate the search for such antigens, we recently developed a method for the expression of P. falciparum proteins in Escherichia coli as fused polypeptides. Many clones producing antigens were detected by screening with immune human sera. We show here that antibodies against the fused polypeptide expressed by one such clone react with a P. falciparum protein that is synthesized late in schizogony and is later present on the surface of the ring-infected erythrocyte. The protein is composed of repeating subunits of 8, 4 and 3 amino acids and is present in all isolates of P. falciparum examined.  相似文献   

13.
Rapid switching to multiple antigenic and adhesive phenotypes in malaria.   总被引:67,自引:0,他引:67  
Adhesion of parasitized erythrocytes to post-capillary venular endothelium or uninfected red cells is strongly implicated in the pathogenesis of severe Plasmodium falciparum malaria. Neoantigens at the infected red-cell surface adhere to a variety of host receptors, demonstrate serological diversity in field isolates and may also be a target of the host-protective immune response. Here we use sequential cloning of P. falciparum by micromanipulation to investigate the ability of a parasite to switch antigenic and cytoadherence phenotypes. Our data show that antigens at the parasitized cell surface undergo clonal variation in vitro in the absence of immune pressure at the rate of 2% per generation with concomitant modulations of the adhesive phenotype. A clone has the potential to switch at high frequency to a variety of antigenic and adhesive phenotypes, including a new type of cytoadherence behaviour, 'auto-agglutination' of infected erythrocytes. This rapid appearance of antigenic and functional heterogeneity has important implications for pathogenesis and acquired immunity.  相似文献   

14.
15.
The human malaria parasite Plasmodium vivax is responsible for 25-40% of the approximately 515 million annual cases of malaria worldwide. Although seldom fatal, the parasite elicits severe and incapacitating clinical symptoms and often causes relapses months after a primary infection has cleared. Despite its importance as a major human pathogen, P. vivax is little studied because it cannot be propagated continuously in the laboratory except in non-human primates. We sequenced the genome of P. vivax to shed light on its distinctive biological features, and as a means to drive development of new drugs and vaccines. Here we describe the synteny and isochore structure of P. vivax chromosomes, and show that the parasite resembles other malaria parasites in gene content and metabolic potential, but possesses novel gene families and potential alternative invasion pathways not recognized previously. Completion of the P. vivax genome provides the scientific community with a valuable resource that can be used to advance investigation into this neglected species.  相似文献   

16.
Malaria elimination strategies require surveillance of the parasite population for genetic changes that demand a public health response, such as new forms of drug resistance. Here we describe methods for the large-scale analysis of genetic variation in Plasmodium falciparum by deep sequencing of parasite DNA obtained from the blood of patients with malaria, either directly or after short-term culture. Analysis of 86,158 exonic single nucleotide polymorphisms that passed genotyping quality control in 227 samples from Africa, Asia and Oceania provides genome-wide estimates of allele frequency distribution, population structure and linkage disequilibrium. By comparing the genetic diversity of individual infections with that of the local parasite population, we derive a metric of within-host diversity that is related to the level of inbreeding in the population. An open-access web application has been established for the exploration of regional differences in allele frequency and of highly differentiated loci in the P.?falciparum genome.  相似文献   

17.
Climate change and the resurgence of malaria in the East African highlands   总被引:18,自引:0,他引:18  
Hay SI  Cox J  Rogers DJ  Randolph SE  Stern DI  Shanks GD  Myers MF  Snow RW 《Nature》2002,415(6874):905-909
The public health and economic consequences of Plasmodium falciparum malaria are once again regarded as priorities for global development. There has been much speculation on whether anthropogenic climate change is exacerbating the malaria problem, especially in areas of high altitude where P. falciparum transmission is limited by low temperature. The International Panel on Climate Change has concluded that there is likely to be a net extension in the distribution of malaria and an increase in incidence within this range. We investigated long-term meteorological trends in four high-altitude sites in East Africa, where increases in malaria have been reported in the past two decades. Here we show that temperature, rainfall, vapour pressure and the number of months suitable for P. falciparum transmission have not changed significantly during the past century or during the period of reported malaria resurgence. A high degree of temporal and spatial variation in the climate of East Africa suggests further that claimed associations between local malaria resurgences and regional changes in climate are overly simplistic.  相似文献   

18.
Serotyping Plasmodium falciparum malaria with S-antigens   总被引:11,自引:0,他引:11  
R J Wilson 《Nature》1980,284(5755):451-452
The heat-stable proteins known as S-antigens which are associated with Plasmodium falciparum malarial infections in man show considerable serological diversity. Usually, different S-antigens appear in separate malarial episodes in individuals exposed to reinfection. The antigens have a worldwide distribution in endemic areas but the restricted number and characteristic specificity of S-antigens recovered from experimentally infected Aotus monkeys suggest that these antigens might provide suitable markers for serotyping isolates of P. falciparum. Two kinds of evidence to support this idea are presented here. First, S-antigens which characterise an isolate of parasites are shown to retain their specificity over long periods of passage either in vivo or in vitro. Second, predictable mixtures of S-antigens can be recovered from cultures of P. falciparum after deliberately mixing isolates which each give rise to characteristic S-antigens.  相似文献   

19.
Malaria. Cooperative silencing elements in var genes   总被引:11,自引:0,他引:11  
Deitsch KW  Calderwood MS  Wellems TE 《Nature》2001,412(6850):875-876
Each Plasmodium falciparum malaria parasite carries about 50 var genes from a diverse family that encode variable adhesion proteins on the infected red blood cells of the host, but individual parasites single out just one var gene for expression and silence all the others. Here we show that this silencing is established during the DNA-synthesis phase (S phase) of the cell cycle and that it depends on the cooperative interaction between two elements in separate control regions of each var gene (the 5'-flanking region and the intron). This finding should help to clarify the mechanisms by which parasites coordinate the silencing and activation of var genes that are responsible for antigenic variation in malaria.  相似文献   

20.
本文用1%NP-40提取五种疟的虫(间日疟原虫、恶性疟原虫、食蟹猴疟原虫、伯氏疟原虫、约氏疟原虫)红内期可溶性蛋白组分。各种蛋白提取物经SDS-聚丙烯安电泳后氨银染色,所得蛋白图谱经光密度扫描进行分析。实验结果表明五种疟原虫蛋白区带数目及位置各不相同,但两条分子量分别为72KD和64KD蛋白为五种疟原虫共有区带。在五种疟原虫中,以伯多疟原虫与约氏疟原虫蛋白谱最类似,表明二者种间进化关系较接近。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号