首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Paleoecological records of soil δ13Corg from three regions in the middle latitudes of the Northern Hemisphere, including the Chinese Loess Plateau (CLP), the Great Plains and adjacent areas of North America and northwestern Europe, showed different variations since the Last Glacial period. An at-tempt was made to evaluate the causes for the difference in δ13Corg on the basis of the modern climatic data collected in these regions and of the modern C3 and C4 plant distributions. The analysis indicates that temperature, especially the growing season temperature, has a dominant control on the growth of C4 plants. When the mean annual or growing season temperatures are below the "threshold value" , the growth of C4 plants is limited. When the temperature is above the "threshold value" , C4 plants can grow under a wide range of precipitation. However, when the precipitation is high enough to favor the growth of trees, the proportions of C4 plants in local biomass will decline. The implicit control factor recovered by sedimentary records is consistent with the control factor on modern C3/C4 distribution. Pure C3 plants have been dominating the local biomass since the Last Glacial period in European loess region, mainly owing to the low local temperature. The increases in C4 plants from the late Pleistocene to the Holocene in the Chinese Loess Plateau, the Great Plains and adjacent areas, mainly reflect the influ-ence of increasing temperature.  相似文献   

2.
Paleoecological records of soil δ^13Corg from three regions in the middle latitudes of the Northern Hemisphere, including the Chinese Loess Plateau (CLP), the Great Plains and adjacent areas of North America and northwestern Europe, showed different variations since the Last Glacial period. An attempt was made to evaluate the causes for the difference in δ^13Corg on the basis of the modern climatic data collected in these regions and of the modern C3 and C4 plant distributions. The analysis indicates that temperature, especially the growing season temperature, has a dominant control on the growth of C4 plants. When the mean annual or growing season temperatures are below the "threshold value", the growth of C4 plants is limited. When the temperature is above the "threshold value", C4 plants can grow under a wide range of precipitation. However, when the precipitation is high enough to favor the growth of trees, the proportions of C4 plants in local biomass will decline. The implicit control factor recovered by sedimentary records is consistent with the control factor on modern C3/C4 distribution. Pure C3 plants have been dominating the local biomass since the Last Glacial period in European loess region, mainly owing to the low local temperature. The increases in C4 plants from the late Pleistocene to the Holocene in the Chinese Loess Plateau, the Great Plains and adjacent areas, mainly reflect the influence of increasing temperature.  相似文献   

3.
The primary factor controlling C 3 /C 4 relative abundance in terrestrial ecosystem since the Last Glacial has been widely debated. Now more and more researchers recognize that climate, rather than atmospheric CO 2 concentration, is the dominant factor. However, for a specific area, conflicting viewpoints regarding the more influential one between temperature and precipitation still exist. As temperature and precipitation in a specific area usually not only vary within limited ranges, but also covary with each other, it is difficult to get a clear understanding of the mechanism driving C 3 /C4 relative abundance. Therefore, systematic analysis on greater spatial scales may promote our understanding of the driving force. In this paper, records of C3/C4 relative abundance since the Last Glacial on a global scale have been reviewed, and we conclude that: except the Mediterranean climate zone, C3 plants predominated the high latitudes during both the Last Glacial and the Holocene; from the Last Glacial to the Holocene, C4 relative abundances increased in the middle latitudes, but decreased in the low latitudes. Combining with studies of modern process, we propose a simplified model to explain the variations of C3 /C4 relative abundance in global ecosystem since the Last Glacial. On the background of atmospheric CO2 concentration since the Last Glacial, temperature is the primary factor controlling C3/C4 relative abundance; when temperature is high enough, precipitation then exerts more influence. In detail, in low latitudes, temperature was high enough for the growth of C4 plants during both the Last Glacial and the Holocene; but increased precipitation in the Holocene inhibited the growth of C4 plants. In middle latitudes, rising temperature in the Holocene promoted the C4 expansion. In high latitudes, temperature was too low to favor the growth of C4 plants and the biomass was predominated by C3 plants since the Last Glacial. Our review would benefit interpretation of newly gained records of C3/C4 relative abundance from different areas and different periods, and has its significance in the understanding of the driving mechanisms of C3/C4 variations on longer timescales (e.g., since the late Miocene) with reliable records of temperature and atmospheric CO2 concentration.  相似文献   

4.
Zhou  Bin  Shen  ChengDe  Zheng  HongBo  Zhao  MeiXun  Sun  YanMin 《科学通报(英文版)》2009,54(12):2082-2089
There are many controversial issues in loess studies such as natural vegetation types on the Chinese Loess Plateau during the historical periods and the spatial and temporal evolution of C3/C4 plants. Elemental carbon isotopic composition (δ^13Cec) in the loess section may offer new evidence for these problems. Elemental carbon (EC) is produced by incomplete combustion of vegetation, and its carbon isotopic composition has a very small difference from that of the formal vegetation, then δ^13Cec can be used as a record to recover the changes of vegetation. Elemental carbon was extracted by applying the oxidation method from the Ioess-paleosol sequence in the central Chinese Loess Plateau, and its car- bon isotope composition was analyzed by the isotope mass spectrometer. The results showed that the vegetation in this region was a mixed type of C3 and C4 plants, dominated with C3 plants in most of the time. Since late Quaternary, C3/C4 plants may not follow a simple glacial-interglacial cycle mode on the Chinese Loess Plateau, but showing fluctuations. C3 plants increased gradually in L4 period, and more C3 plants occurred during $3 period, and C4 plants increased again during L3-- L2 periods, after that, Cs plants dominated again during S1 --S0 periods. During periods of paleosol development, C3 plants were abundant in S3 and S1, and there were more Ca plants in S2 and SO. During periods of loess sedimen- tation, there were more C3 plants in L4 and L1, and there were more C4 plants in L3 and L2. On the orbital timescale, the vegetation variations revealed by δ^13Cec record are consistent with the results of pollen data and also similar to the results obtained by organic carbon isotopic composition since the last glacial period.  相似文献   

5.
Changes in biodiversity during periods of glo- bal warming are of broad public concern. To study the effect of the warming process on the ecosystem, we carried out pollen analyses on samples from seven selected sections at Qingyang, Ningxian, Yangling, Binxian, Baoji, Yanshi, and Lingbao on the Chinese Loess Plateau in order systematically to evaluate changes in plant diversity since the Last Glacial Maximum (LGM). The plant richness indices (Simpson's diversity index and rarefaction analysis) indicated that the plant diversity of each section increased during the process of warming from the LGM to the Holocene Optimum, especially at Baoji and Lingbao. These results are consistent with many long-timescale geological records, which show that warming can increase biodiversity; therefore, the popular viewpoint that warming leads to biodiversity loss or species extinction needs to be re-examined.  相似文献   

6.
Plant specimens are collected from the areas between latitude 27°?2′N and 40°57′N, and longitude 88°93°E and 103°24′E, with an altitudinal range from 2210 to 5050 m above the sea level in Qinghai-Tibetan Plateau. The stable carbon isotope analysis indicates that two of Chenopodiaceae and six of Poaceae in the samples are C4 plants. Four of the C4 plants are found in 11 spots with altitudes above 3800 m, and Pennisetum centrasiaticum, Arundinella yunnanensis and Orinus thoroldii are present in six spots above 4000 m, even up to 4520 m. At low CO2 partial pressure, that sufficient energy of high light improving C4 plant's tolerance of low temperature and precipitations concentrating in growing season probably are favorable for C4 plants growing at high altitude in Qinghai-Tibetan Plateau.  相似文献   

7.
Carbon isotope compositions for both the carbonate shells and soft bodies (organic tissue) of living land snails collected mostly from the Loess Plateau, China have been measured. The result shows that δ 13C values range from -13.1‰ to -4.3‰ for the aragonite shell samples and from -26.8‰ to -18.0‰ for the soft body samples. Although the shells are enriched in 13C relative to the bodies averagely by 14.2(±0.8)‰, the shell δ 13Ca values are closely correlated to the body δ 13Corg values, expressed as δ 13Ca = 1.021 δ 13Corg 14.38 (R = 0.965; N = 31). This relationship indicates that δ 13Ca is primarily a function of the isotopic composition of the snail diets since previous studies have proved that the snail body is the same as their food in carbon isotope composition. In other words, carbon isotope compo-sition of the carbonate shell can be used as a proxy to estimate the dietary 13C abundance of the land snails. The data also support that the 13C enrichment of the carbonate shells results mainly from the equilibrium fractionations between the metabolic CO2, HCO3-in the hemolymph and shell aragonite, and partially from kinetic fractionations when snail shells form during their activity.  相似文献   

8.
The loess-paleosol sequence on the Chinese Loess Plateau provides abundant information of paleoclimate and paleoenvironment[1―3]. The carbon isotopic compo- sitions of the C3 and C4 plants are different: from ?32‰ to ?20‰ (mean value is ?27‰) for C3 p…  相似文献   

9.
Two sediment cores, KCES1 and ODP797, which were recovered from the Sea of Japan (JS), were measured for alkenone-derived sea surface temperatures (U37-SSTs). Our results revealed that the SSTs closely follow the glacial-interglacial cycles during the last 170 ka, except in the last glacial maximum (LGM), during which the SST was higher than in the Holocene. The anomalous high temperature in the LGM is considered as an effect of the intrusion of a low salinity water mass into the JS when the sea level was almost below 130 m. On the glacial- K interglacial to orbital timescale, the U37-SSTs record in the JS correlated well with the benthic foraminiferal SO record and solar insolation, which suggests the dominant control of solar insolation and its related sea ice develop- ment on the SST in the JS. On the sub-orbital/millennial timescale, reduced SST corresponds to an enhanced east asian winter monsoon (EAWM) during the last glacial period (MIS3 and MIS4), indicating the dominant control of sea ice expansion due to the enhanced EAWM on the SST in the JS. In contrast, during the last interglacial period (MIS5), the SST in the JS was controlled by variations in the east Asian summer monsoon. These results highlight the key role of solar insolation and associated glacial-interglacial conditions in the variations of the SST in the JS since the last 170 ka.  相似文献   

10.
Since the 1950s of the last century, the exotic plant, Eupatorium adenophorum, has spread rapidly across southwest China, damaging native ecosystems and causing great economic losses. We examined the pH, N, P, K, and organic matter concentrations, and the bacterial community character (by Biolog EcoPlateTM) in soils from sites heavily and lightly invaded by this exotic species. Also, soil from the lightly invaded site was treated with a water extract of E.adenophorum roots to examine the effect of the plant on soil properties. We grew three plant species, one native and two exotic, in pot experiment using soil from heavily invaded site to examine the effects of the soil on these plants growth. The soil analysis demonstrated that the pH, organic matter, total N, total P and total K in soils from the heavily invaded site were only slightly different from those of the lightly invaded site, but concentrations of NH4^ , NO3^- and available P and K in the heavily invaded site were greater than those in the lightly invaded site. The catabolic activity of soil bacterial community in the heavily invaded site was different from that in the lightly invaded site. The catabolic activity of bacterial community in soils treated by the water extract of E.adenophorum roots changed and became similar to that in soils from the heavily invaded site. The pot experiment showed that the exotic plants growth in heavily invaded soil were not different from in lightly invaded soil; however, the native plant biomass decreased dramatically when grown in soil from the heavily invaded site as compared to soil from the lightly invaded site; and the same phenomenon was found when any potential allelopathic effects by E. adenophorum were eliminated by added activated carbon to those soils. Difference in soil nutrient availability and allelopathy could not explain this phenomenon of the native plant in the soils from the heavily and lightly invaded sites. Changes observed in the soil bacterial community were obviously related to native plant growth in those tow soils. Those results suggest that changing soil microbial community may be an important part of E. adenophorum invasion process. Since the soil microbial community serves as bridge in connection of exotic and natural plants, the exotic plant could inhibit the natural plant growth and reproduction by changing the soil microbial community in invaded site.  相似文献   

11.
The foliar C and N stable isotopic compositions (δ^13C and δ^15N) and the relationships between these compositions and environmental factors of C3 plants in the Ethiopia Rift Valley were investigated. There were three distribution patterns for foliar δ^13C with mean values of -26.7‰±0.4‰, -29.7‰ ±0.6‰ , and -26.9‰± 1.2‰ in cold-moist, temperate-moist, and arid-hot environments, respectively. The δ^15N values ranged from -1.4‰ ±1.7‰ to 14.3‰ ± 0.1‰, with higher values under arid-hot conditions and the lowest values in plants growing at higher altitudes under cold-moist conditions. A strong negative relationship between mean annual precipitation and δ^15N explained more than half of the observed variation in the δ^15N values (r2= 0.54, P 〈 0.001); a modest positive relationship was also found between δ^15N and temperature (r2 = 0.32, P 〈 0.01). A weakly positive relationship existed between δ^13C and temperature, and changes in δ^13C values with precipitation and altitude followed quadratic curves. This suggests a shift in the effects of water and heat conditions caused by altitude on carbon isotopic discrimination.  相似文献   

12.
The nitrogen isotope of soil is of emerging significance as an indicator of climatic change and biogeochemical cycle of nitrogen in nature systems. In this paper, the nitrogen content and isotopic composition of modern ecosystems from arid and semiarid Loess Plateau in northwestern China, including plant roots and surface soil, were determined to investigate trends in δ15N variation of plant roots and soil along a precipitation and temperature gradient in northwestern China under the East Asian Monsoon clim...  相似文献   

13.
A 5.3 m lake core was drilled in Baahar Nuur Lake in the Ordos Plateau, and measurements of meangrain size, organic δ 13C (δ 13Corg), organic carbon content (TOC), C/N, carbonate content, carbonate δ 13C(δ 13Ccar) and δ 18O (δ 18Ocar) were conducted for retrieving the Holocene chronosequence of climaticchanges based on 15 AMS 14C dates. The record documented four major stages of climate change inthe Ordos Plateau: (IV) a cold and dry condition before ~7.65 14C ka BP; (III) a warm and humid stagebetween ~7.65 and ~5.40 ka BP; (II) a generally drier and cooler climate since ~5.40 ka BP with twohumid events occurring from ~4.70 to ~4.60 ka BP and from ~4.20 to ~3.70 ka BP, and (I) a dry climatecharacterized by complete desiccation of the lake after 3.70 ka BP. Stage III can be further divided intothree sub-stages: (IIIa) a warm and humid episode from ~7.65 to ~6.70 ka BP, (IIIb) a warm and relativelydry episode from ~6.70 to ~6.20 ka BP, and (IIIc) the magthermal and maghumid episode of the Holo-cene from ~6.20 to ~5.40 ka BP.  相似文献   

14.
Carbon isotope ratios (δ 13C) of plants, litter and soil organic matter (0–5 cm, 5–10 cm and 10–20 cm) on the eastern slope of Mount Gongga were measured. The results show that δ 13C values of plants, litter and soil organic matter all decrease first and then increase with altitude, i.e. δ 13C values gradually decrease from 1200 to 2100 m a.s.l., and increase from 2100 to 4500 m a.s.l. The δ 13C altitudinal variations are related to the distribution of C3 and C4 plants on the eastern slope of Mount Gongga, ...  相似文献   

15.
This study generated a high-resolution paleoweathering record of the loess-soil sequence from the central Loess Plateau covering the last 220 ka using the ratio between the CBD (citrate-bicarbonate-dithionite) extractable free Fe_2O_3 (Fed) and total Fe_2O_3 (Fet). The new proxy shows a series of millennial oscillations, which are not necessarily documented by magnetic susceptibility from the same site. Because chemical weathering in the region depends mainly upon summer precipitation and temperature, we interpret these changes to be a result of millennial-scale variations in the strength of the East-Asian summer monsoon. Over the last glacial period, there is general agreement between the loess weathering record and the GRIP ice δ~(18)O record. The first suggests a rather stable summer monsoon pattern during the Last Interglacial period (marine δ~(18)O stage 5e). Large amplitude millennial oscillations of the summer monsoon seem to be particularly characteristic of the last glacial period whereas the fluctuations for the older periods are smoother.  相似文献   

16.
Knowledge of seasonal climate change is one of the key issues facing Quaternary paleoclimatic studies and estimating seasonal climate change is difficult,especially changes such as seasonal length on glacial-interglacial timescales.The stable isotope composition from seasonal land snail shells provides the potential to reveal seasonal climatic features.Two modern land snail species,cold-aridiphilous Pupilla aeoli and thermo-humidiphilous Punctum orphana,were collected from different climatic zones in 18 localities across the Chinese Loess Plateau,spanning 11 degrees of longitude and covering a range of 1000 km2.The duration of the snail growing season(temperature ≥10℃) was shorter(202 ± 6 d) in the eastern Loess Plateau compared with in the western Loess Plateau(162 ±7 d).The δ13C of P.aeoli shells was ?9.1‰ to ?4.7‰ and ?5.0‰ to 0.3‰ for δ18O.For P.orphana,the δ13C ranged from ?9.1‰ to ?1.9‰ and ?8.9‰ to ?2.9‰ for δ18O.Both the δ13C and δ18O differences between the two snail species were reduced from the east to the western Loess Plateau(2.8‰ to 0.2 ± 1.1‰ for δ13C and 4.7‰ to 2.9 ± 1.3‰ for δ18O).These isotopic differences roughly reflect the difference in the growing season lengths between the east and west Loess Plateau indicating that the duration of the snail growing season shortens by 15 d or 19 d if the difference decreases by 1‰ in δ13C or δ18O,respectively.Thus,the difference in δ13C and δ18O between both snail species can be used to reveal the length of the snail growing season in the past.Based on our investigation,the length of the snail growing seasons from the Xifeng region during the last 75 ka was reconstructed.During the mid-Holocene(8-3 ka),the mean isotopic difference from both snail species reached maximum values of 2.6 ± 0.7‰ and 2.1 ± 1.4‰ for δ13C and δ18O,respectively.This was followed by MIS 3 that ranged from 2.5 ± 0.4‰ for δ13C and 1.6 ± 0.8‰ for δ18O.The Last Glacial Maximum changed by only 0.2‰ and 0.4‰ for δ13C and δ18O,respectively.Therefore,we estimate that the duration of the snail growing seasons to be ~200 ± 10 d during the mid-Holocene,190 ± 6 d in MIS 3 and 160 ± 3 d during the last glacial period.  相似文献   

17.
The carbon isotopic compositions of soil organic matter (SOM) and total carbonate (TC) in Xifeng Ioess-paleosol sequence have been studied. The δ^13CsoM values vary from -23.8‰ to -20.2‰, which are higher in interglacial than in glacial stages. Contrary to δ^13Csoi values, the δ^13CTc values vary from -8.5‰ to -3.6‰ and are lower in interglacial than in glacial stages. The differences (△δ^13C) between the δ^13CsoM and δ^13CTc values vary from 14.1‰ to 19.4‰. Our results from the Xifeng loesspaleosol sequence indicate that the △δ^13C values represent the ratio of primary carbonate (PC) to secondary carbonate (SC). The △δ^13C values were high in the loess stages, and the maximal PC-to-SC ratio can reach 6:4. But in the paleosol stages, the △δ^13C values were low, with a small proportion of PC. The △δ^13C values in Ioess-paleosol sequence also indicate the contributions of the dust to the loess sediment in the Chinese Loess Plateau because the dust contains the PC.  相似文献   

18.
Short cores of about 80-cm retrieved from three main basins of th e deepwater areas in Qinghai Lake,the largest inland enclosed lake in China, were studied. Sta-ble isotopes of authigenlc carbonates, grain-size, carbonate and organic matter content at 5-year resolution are used to reconstruct the climatic history over the last 800 years in the Northeastern Tibetan Plateau. Chronology was established according to 210^pb dating and 137^Cs methods and the core corrdation. It is found that cores from different deep basins of the lake can be well correlated. The sedimentary rate is highest in the western basin of the lake and lowest in the east.In the southern basin of the lake where the short core Qing-6is located, the recent average sedimentation rate is 0.1004cm/yr. Variations in effective precipitation recorded by the oxygen isotopes and grain size data durine the last 800 years are consistent with the glacial accumulation record form the Dunde and Guliya ice cores. A dry climate lasted for 300 years from 1200 AD to 1500 AD, followed by a wet period from 1500 to 1560 AD. The two dry periods, 1560 to 1650 AD and 1780 to 1850 AD, were the results of southwest monsoon weakening. The effective precipitation generally increased since 1650 AD due to the strengthening of the Asian South-west Monsoon, resulting in a wet period until the 1950s. Ex-cept the early stage, the Little Ice Age on the Plateau is characterized b y increased effective moisture. Organic mat-ter content, with nearly 200-year cycles, shows similar trend with the atmospheric delta earbon-14 before the 1850s, indi-eating that the bioproductivity responds to solar activity.  相似文献   

19.
A continuous pollen record from the Zoige Basin in the northeastern Qinghai-Tibetan Plateau not only provides information on the vegetation and climate changes during the last two glacial/interglacial cycles, hut also gives proof to establish the time scale of the upper 60 m of the RM core. Subalpine spruce-fir forests colonized the Zoige Basin during the interglacials and interstadials, implying warm and wet climate conditions. Alpine periglacial desert or dry desert may have existed during the penultimate glacial and the last glacial maxima, respectively. Alpine sedge meadow dominated the landscape during MIS 4. The MIS 3 is punctuated by a number of stadials similar to those documented in the Guliya and GISP2 ice cores, as indicated by repeated rise and fall of subalpine spruce-fir forests. Our pollen record reveals a regional climate history similar to those from the neighboring sites, including the Arabian Sea and the Guliya ice core, and thus supports the notion that the Qinghai-Tibetan Plateau acts as an important link between climatic events in the North Atlantic realm and the Asian monsoon domain.  相似文献   

20.
On the basis of GC and GC-MS analyses, the seasonal variation of leaf lipids is observed in five plant species in Qingjiang in Hubei Province. The CPI values (carbon preference index) of n-alkanes decrease gradually from May to November, though the carbon number distributions and the predominant carbon number in an individual species keep unchanged. The declined CPI values might be caused by the leaf fading, which is further supported by a comparison of the defoliated leaves with the fresh leaves. This observation infers the CPI values of n-alkanes in Quaternary sediments can be used as a tool to index the humification, and thus the climatic and the environmental conditions. The plants analyzed here show a remarkable difference in n-alkanes abundance, suggesting their differential contribution to the n-alkanes identified in sediments. The abundance and the compound species of the n-alkenes detected in the plant leaves change greatly with the seasons due to the influence of temperature, with the least compounds being identified in August.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号