首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
采用树枝状聚苯胺,长纤维聚苯胺,树枝状聚苯胺-石墨烯以及长纤维聚苯胺-氮掺杂石墨烯4种气凝胶作为前驱体,经直接碳化后获得了氮掺杂连续的纳米碳.研究了聚苯胺基气凝胶衍生纳米碳的微观形貌结构、元素组成以及电化学性能.结果表明,树枝状聚苯胺,长纤维聚苯胺,树枝状聚苯胺-石墨烯以及长纤维聚苯胺-氮掺杂石墨烯气凝胶衍生的纳米碳具有连续的多级孔结构,其比表面积分别为273.9、487.7、241.4和295.9 m2·g-1,氮的摩尔分数分别高达7.82%、9.62%、7.91%和10.17%,在0.5 A·g-1的电流密度下分别具有高达268、311、280和362 F·g-1的质量比电容,且倍率性能和循环稳定性能优异.  相似文献   

2.
采用双氧水降解法制备能溶于碱性溶液的质量分数高达9% 的壳聚糖溶液,以该均相溶液作为碳前驱体的原料、氢氧化钾为活化剂,利用碳酸氢钾高温产生气体来增加孔隙率和比表面积,采用冷冻干燥和高温碳化的方法制备活性炭电极材料,并测试分析其表面形貌、微观结构及电化学性能.结果显示:制备的碳材料具有分级的复杂三维孔结构,微孔、介孔、大...  相似文献   

3.
测试分析了酚醛树脂碳化产物组装的锂离子充放电性能.实验结果表明,树脂碳化产物作为锂离子电池碳电极材料时,其碳化处理温度有一个最佳温度范围,酚醛树脂碳化产物的最佳温度在700℃左右;树脂碳化产物的比表面积是影响电池充放电性能的重要因素,碳化产物的比表面积越大,电池的充放电量就越高,电池充放电量与充放电电流密度成反比.  相似文献   

4.
为了确定生物质碳阴极催化剂对微生物燃料电池(microbial fuel cells,MFCs)产电性能的影响,以马尾藻、江篱、青贮能源草为原料,分别制备了生物质碳阴极催化剂材料,以XC-72R活性炭粉作对照,通过傅立叶红外光谱仪(FT-IR)、BET(brurauer-emmett-teller)比表面积分析仪、X射线光电子能谱仪(XPS)、EDX(energy dispersive X-Ray spectroscopy)等对生物质碳阴极催化剂材料进行了分析与表征,研究了它们对空气阴极微生物燃料电池阴极氧还原反应的催化效果以及对微生物燃料电池产电性能的影响.结果表明:四种碳基材料催化剂中,马尾藻生物碳催化剂的含氮基团质量分数高达4.04%,它对氧还原的催化性能最好.  相似文献   

5.
以硅基介孔材料HMS(hexagonal mesoporous silica)为硬模板,以蔗糖为碳源,通过在N2气氛下高温碳化蔗糖,并利用氢氟酸除去模板制成介孔碳.分析了蔗糖填充方法、碳化温度和蔗糖与HMS的质量比对产品介孔碳结构的影响,并利用X衍射衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、低温氮吸附-脱附及傅里叶红外(FT-IR)对样品进行了表征.结果表明,将一定量的蔗糖分两步填入HMS介孔中有利于碳源在模板孔道中均匀分布,有助于有序介孔碳的形成;碳化温度对最终产品碳的结构影响显著,适宜的碳化温度为800℃;蔗糖与HMS的质量比也直接影响产品的结构,两者的质量比过高或过低均难以形成介孔碳,最优比例为1.300∶1;所制成的介孔碳具有蠕虫状结构,比表面积可达2433m2/g.  相似文献   

6.
制备具有高比表面积及良好导电性的含氮碳材料是提高超级电容器电化学性能的重要途径.文章将三聚氰胺甲醛树脂预聚体及十六烷基三甲基溴化铵(CTAB)改性的氧化石墨烯(GO)复合,经水热反应、碳化及活化等步骤制备了三聚氰胺/石墨烯复合碳材料,通过XRD、BET、孔径表征、循环伏安法和交流阻抗等方法对碳材料的物相结构和电化学性能进行表征测试,研究复合碳材料的制备条件对电化学性能的影响.结果显示,碳材料以介孔为主,平均孔径为3.62 nm,比表面积为497 m2·g-1;在CTAB与GO质量比为1∶1,p H=9,条件下制得的复合碳材料,在6 mol·L-1KOH电解液中的质量比电容为113 F·g-1.  相似文献   

7.
以甲基纤维素为原料,改变水热碳化温度得到不同水热产物,随后对其进行化学活化得到多孔碳样品。研究水热温度对多孔碳样品形貌和孔结构的影响,测试了样品在不同压力下的CO2吸附性能。结果表明,水热温度对纤维素基多孔碳的孔结构影响较大。随着水热温度的升高,其比表面积、孔容、微孔比表面积、微孔孔容均呈现出先增大后减小的趋势,平均孔径则先减小后增大。CO2吸附量也先增加后减小。样品ACe-270在纤维素基多孔碳中吸附性能最优,在温度为25 ℃、压力分别为0.1、0.2、0.3、0.4 MPa的条件下,其CO2吸附量分别为0.65、1.92、3.76、5.23 mmol·g-1。  相似文献   

8.
测试分析了酚醛树脂碳化产物组装的锂离子充放电性能.实验结果表明,树脂碳化 产物作为锂离子电池碳电极材料时,其碳化处理温度有一个最佳温度范围,酚醛树脂碳化产物 的最佳温度在700℃左右;树脂碳化产物的比表面积是影响电池充放电性能的重要因素,碳化 产物的比表面积越大,电池的充放电量就越高,电池充放电量与充放电电流密度成反比.  相似文献   

9.
测试分析了酚醛树脂碳化产物组装的锂离子充放电性能,实验结果表明,树脂碳化产物作为锂离子电池碳电极材料时,其碳化处理温度有一个最佳温范围,酚醛树脂碳化产物的最佳温度在700℃左右,树脂碳化产物的比表面积是影响电池充放电性的重要因素,碳化产物的比表面积越大,电池的充放电量就越高,电池充放电量与充放电电流密度成反比。  相似文献   

10.
利用自行合成的五种有机高分子树脂作为碳化预聚体,系统分析了碳化处理条件对制备的树脂碳粉末材料比表面积的影响,同时还分析讨论了树脂的空间结构和元素组成对树脂碳粉末材料比表面积的影响。实验结果表明,碳化处理温度和碳化处理气氛对制备的树脂碳粉末材料比表面积有重要的影响,后者的影响程度大于前者。同时还发现,具有一维线性结构的有机高分子树脂制备的树脂碳粉末材料比表面积都高于相同碳化处理条件下的三维立体结构的有机高分子树脂制备的树脂碳粉末材料。对比分析了树脂中氧、硫、氮等元素对树脂碳粉末材料比表面积的影响规律,其影响程度为S>O>N.综合来看,杂原子对树脂碳化产物比表面积的影响大于树脂空间结构效应的影响。  相似文献   

11.
以正硅酸乙酯为模板硅源,间苯二酚和甲醛为炭源,通过溶胶一凝胶反应,制得中孔炭材料.采用SEM、XRD、N2吸附等温线研究了炭材料的形貌和结构;采用电化学工作站研究了炭材料的电化学电容性能.结果表明,炭材料为石墨化的无序结构,比表面积为1313m2·g-1,孔径约10nm.在6mol·L-1H2s04中表现出良好的电化学电容性能.当放电电流密度为0.05A·g-1时,炭材料的质量比电容为265F·g-1,其容量保持率达92.8%,具有良好的电化学稳定性和可逆性.  相似文献   

12.
以酚醛树脂为前驱体,以聚乙二醇为致孔剂,采用聚合物共混法制备超级电容器用中孔炭电极材料. 采用N2吸附法测试了炭材料的比表面积和孔结构参数. 采用恒流充放电、循环伏安、交流阻抗等评价了其在1mol·L-1Et4NBF4/PC有机电解液中的电化学双电层电容性能. 结果表明,酚醛树脂和聚乙二醇等比例共混炭化制备的多孔炭的比表面积为618m2·g-1,中孔率为59.7%,比电容为32F·g-1,大电流性能和循环性能良好.  相似文献   

13.
燃料电池是一种环境友好、转换效率高、能量密度高的能量转换装置,可将化学能直接转换为电能。但目前应用于阴极氧还原(oxygen reduction reaction, ORR)的铂基催化剂价格昂贵、资源稀缺、抗甲醇能力低的缺点限制了它的应用。基于此,以生物质材料壳聚糖为前驱体,通过水热法将壳聚糖包覆到分层多孔氮掺杂碳骨架(hierarchically porous nitrogen-doped carbon, HPC)上,经高温处理得到了高效的铁掺杂壳聚糖包覆HPC催化剂(Fe-HPC@CTS)。研究结果表明:壳聚糖已包覆到HPC上,有效的提升了催化剂的比表面积;壳聚糖包覆HPC,一方面增加了催化剂中的活性位点,另一方面HPC提供了导电性好、比表面积大的基底,从而使得催化剂拥有一个良好的电子传输通道以及暴露更多的活性位点,从而使催化剂的ORR性能有明显的提升;该催化剂在碱性条件下ORR半波电位为0.80 V,极限电流密度为6.50 mA·cm-2。通过抗甲醇性能测试,该催化剂的抗甲醇性能要优于20% Pt/C催化剂。  相似文献   

14.
以乙炔黑为载体 ,用化学吸附还原法制备了不同铂含量的铂炭复合电极 ,采用恒电位法测定出这些铂炭复合电极的阴极过电势 η随极化电流密度j的变化关系曲线 (阴极极化曲线 )。在此基础上求出了铂炭复合电极的交换电流密度、塔菲尔常数和对称系数等有关电化学参数。实验结果表明 ,在一定范围内 ,随着铂炭复合电极中铂含量的增加 ,其交换电流密度也随之增大。这表明在此范围内 ,随着电极中铂含量的增加 ,铂炭复合电极传输氧化还原反应电流的能力逐渐增强。因此 ,将铂炭复合材料作为离子膜燃料电池电极材料时 ,铂含量高的铂炭复合电极更有利于电化学反应的进行。实验结果还表明 ,铂炭复合电极中的铂含量对电极反应过程中的塔菲尔常数和对称系数都有一定的影响 ,随着复合电极中铂含量的增加 ,电极反应过程中的塔菲尔常数和对称系数也发生规律性的变化  相似文献   

15.
用原位化学氧化聚合的方法合成聚苯胺/气相生长的碳纤维的复合材料, 采用SEM, FTIR和TGA对聚苯胺/气相生长的碳纤维复合材料的微观形貌、结构和热稳定性进行测定。SEM结果显示, 聚苯胺/气相生长的碳纤维复合材料属于纳米级别, 形貌与气相生长的碳纤维类似, 推测苯胺的聚合作用发生在碳纤维的表面。FTIR结果显示聚苯胺与复合材料具有相似的图谱, 进一步证实聚合作用发生在碳材料的表面, 聚合过程中未产生新的键合作用。将复合材料作为阴极催化剂修饰到碳布的基底电极上, 修饰量为5 mg/cm2, 结果表明复合材料修饰的微生物燃料电池的功率密度最大值为299 mW/m2, 比未修饰的燃料电池提高6.5倍。电化学阻抗谱图较好地符合Nyquist模型, 并给出等效电路图。聚苯胺/气相生长的碳纤维复合材料可以作为一种廉价且性能优良的阴极氧气还原反应催化剂。  相似文献   

16.
本文采用水热方法合成不同粒径和形貌的碳球,并将其作为载体,采用化学镀的方法制备PtRu/C催化剂;应用XRD、SEM和TEM对碳球及催化剂的结构和形貌进行表征。采用电化学方法测试不同形貌碳球的比表面积以及碳球担载催化剂的催化活性,结果表明,水热反应条件对碳球的粒径及形貌影响显著,三种碳球担载催化剂的活性按照以下顺序衰减:多孔的粒径约为100nm的碳球担载PtRu催化剂优于连体碳球优于直径约500nm的单分散碳球担载催化剂。TEM分析结果表明,在碳球表面化学镀的PtRu纳米颗粒均匀分散在碳载体表面,其平均粒径约为3nm。电化学测试表明粒径为100nm的多孔碳球的电化学比表面积较大,以这种碳球为载体的PtRu/C催化剂对甲醇氧化的催化性能较高。  相似文献   

17.
研究了粘胶基碳纤维在不同电解质中经过电化学氧化后的润湿性能和BET比表面,并用XPS分析了电化学氧化前后碳纤维的表面基团。实验结果表明,电化学氧化可以明显增加碳纤维的润湿性能和比表面积。XPS的分析结果表明,经过不同电解质电化学氧化后碳纤维表面含氧基团的增加,尤其是强亲水性羧基的增加是碳纤维表面润湿性能提高的主要原因。  相似文献   

18.
煤炭是世界上储量最为丰富的化石燃料之一,是制造多孔碳、纳米碳、碳质复合材料和石墨烯的主要原料。燃料电池是一种通过化学反应将化学燃料直接转化为电能的装置,它不受卡诺循环限制,具有高效率、高功率密度和环境友好等特点,有着巨大的应用前景。但其阴极氧还原反应(cathodic oxygen reduction reaction, ORR)动力学非常缓慢,需要在催化剂的作用下加速其反应。现有的催化剂主要是贵金属Pt,但Pt资源储量少、成本高、稳定性差,限制了燃料电池的商业化应用。近年来的研究表明,碳基材料是最有希望替代Pt的催化剂材料。基于此,对近年来煤基多孔碳的制备方法进行了综述,并在此基础上阐述了以煤基活性炭为基体的燃料电池用氧还原电催化剂的研究进展。  相似文献   

19.
采用K2FeO4浸泡和热处理相结合的方法制备了石墨化柚子皮多孔炭(GSPC). 通过扫描电子显微镜(SEM)、比表面积分析(BET)、X射线衍射(XRD)、X射线光电子能谱(XPS)和拉曼光谱(Raman)对材料的形貌和组成进行表征. 使用循环伏安法(CV)、交流阻抗法(EIS)和恒流充放电法(GCD)研究了GSPC的电容性能. 结果表明:石墨化后材料的比表面积由75.91 m2/g增大到619.78 m2/g,孔容积由0.192 cm3/g增大到0.425 cm3/g;GSPC具有出色的双电层电容性能,在1 A/g的电流密度下,比电容达254 F/g,且具有优异的倍率性能(7 A/g的电流密度下,电容保持率为74%). 此外,GSPC电极在100 mV/s下循环10 000次的比电容没有衰减,具有优异的循环稳定性. 此研究可为开发廉价的高性能生物质炭基材料提供新思路.  相似文献   

20.
采用不同种类表面活性剂对活性炭进行真空浸渍活化.通过红外光谱、热失重分析和电化学性能评价对处理前后的活性炭进行研究.结果表明,表面活性剂处理活性炭,可明显提高活性炭的有机电解液可润湿性,增加其比表面积利用率,改善活性炭电极的黏结性能.十二烷基苯磺酸钠处理后的活性炭电极,比电容由143.2F·g-1提高到196.8F·g-1,内阻由1.75Q降低到0.71Ω,最大功率密度由6035.7W·kg-1增加到9380.2W·kg-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号