首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Summary A calmodulin stimulated Ca2+-transport ATPase which has many of the characteristics of the erythrocyte type Ca2+-transport ATPase has been purified from smooth muscle. In particular, the effect of calmodulin on these transport enzymes is mimiced by partial proteolysis and antibodies against erythrocyte Ca2+-transport ATPase also bind to the smooth muscle (Ca2++Mg2+)ATPase. A correlation between the distribution of the calmodulin stimulated (Ca2++Mg2+)ATPase and (Na++K+)ATPase activities in smooth muscle membranes separated by density gradient centrifugation suggests a plasmalemmal distribution of this (Ca2++Mg2+)ATPase. A phosphoprotein intermediate in smooth muscle which strongly resembles the corresponding phosphoprotein in sarcoplasmic reticulum of skeletal muscle may indicate the presence in smooth muscle of a similar type of Ca2+-transport ATPase.  相似文献   

2.
Summary The role of Ca2+ in secretagogue-induced insulin release is documented not only by the measurements of45Ca fluxes in pancreatic islets, but also, by direct monitoring of cytosolic free Ca2+, [Ca2+]i. As demonstrated, using the fluorescent indicator quin 2, glyceraldehyde, carbamylcholine and alanine raise [Ca2+]i in the insulin secreting cell line RINm5F, whereas glucose has a similar effect in pancreatic islet cells. The regulation of cellular Ca2+ homeostasis by organelles from a rat insulinoma, was investigated with a Ca2+ selective electrode. The results suggest that both the endoplasmic reticulum and the mitochondria participate in this regulation, albeit at different Ca2+ concentrations. By contrast, the secretory granules do not appear to be involved in the short-term regulation of [Ca2+]i. Evidence is presented that inositol 1,4,5-trisphosphate, which is shown to mobilize Ca2+ from the endoplasmic reticulum, is acting as an intracellular mediator in the stimulation of insulin release.  相似文献   

3.
The ability of cells to migrate to the destined tissues or lesions is crucial for physiological processes from tissue morphogenesis, homeostasis and immune responses, and also for stem cell-based regenerative medicines. Cytosolic Ca2+ is a primary second messenger in the control and regulation of a wide range of cell functions including cell migration. Extracellular ATP, together with the cognate receptors on the cell surface, ligand-gated ion channel P2X receptors and a subset of G-protein-coupled P2Y receptors, represents common autocrine and/or paracrine Ca2+ signalling mechanisms. The P2X receptor ion channels mediate extracellular Ca2+ influx, whereas stimulation of the P2Y receptors triggers intracellular Ca2+ release from the endoplasmic reticulum (ER), and activation of both type of receptors thus can elevate the cytosolic Ca2+ concentration ([Ca2+]c), albeit with different kinetics and capacity. Reduction in the ER Ca2+ level following the P2Y receptor activation can further induce store-operated Ca2+ entry as a distinct Ca2+ influx pathway that contributes in ATP-induced increase in the [Ca2+]c. Mesenchymal stem cells (MSC) are a group of multipotent stem cells that grow from adult tissues and hold promising applications in tissue engineering and cell-based therapies treating a great and diverse number of diseases. There is increasing evidence to show constitutive or evoked ATP release from stem cells themselves or mature cells in the close vicinity. In this review, we discuss the mechanisms for ATP release and clearance, the receptors and ion channels participating in ATP-induced Ca2+ signalling and the roles of such signalling mechanisms in mediating ATP-induced regulation of MSC migration.  相似文献   

4.
Rapid Ca2+-dependent phospholipid (PL) reorganization (scrambling) at the plasma membrane is a mechanism common to hematopoietic cells exposing procoagulant phosphatidylserine (PS). The aim of this research was to determine whether activation of the extracellular signal-regulated kinase (ERK) pathway was required for PL scrambling, based on a single report analyzing both responses induced by Ca2+ ionophores in megakaryoblastic HEL cells. Ca2+ ionophore-stimulated ERK phosphorylation was induced in platelets without external Ca2+, whereas exogenous Ca2+ entry was crucial for ERK activation in Jurkat T cells. In both cells, membrane scrambling only occurred following Ca2+ entry and was not blocked by inhibiting ERK phosphorylation. Furthermore, ERK proteins are strongly phosphorylated in transformed B lymphoblastic cell lines, which do not expose PS in their resting state. Overall, the data demonstrated that ERK activation and membrane scrambling are independent mechanisms. A. Arachiche, I. Badirou: These authors contributed equally to this work. Received 18 June 2008; received after revision 24 September 2008; accepted 1 October 2008  相似文献   

5.
Mitochondria contain a specific Ca2+ release pathway which operates when oxidized mitochondrial pyridine nucleotides are hydrolyzed. NAD+ hydrolysis and therefore Ca2+ release is possible when some vicinal thiols are cross-linked. Here we report that the thiol oxidant peroxovanadate inhibits the specific Ca2+ release pathway. In mitochondria, peroxovanadate causes a complete loss of reduced glutathione, which is not accompanied by formation of glutathione disulfide, and a partial loss of protein thiols. In model reactions, peroxovanadate oxidizes reduced glutathione predominantly to the sulfonate derivative, but does not react with glutathione disulfide. When the vicinal thiols relevant for Ca2+ release are cross-linked, Ca2+ release is no longer inhibited by peroxovanadate. Conversely, pretreatment of mitochondria with peroxovanadate makes them insensitive to compounds promoting the disulfide state. These results suggest that peroxovanadate inhibits the prooxidant-induced Ca2+ release from mitochondria by (i) depleting mitochondria of reduced glutathione and (ii) oxidizing the vicinal thiols relevant for Ca2+ release to a state higher than disulfide, presumably the sulfonate state. The findings provide further insight into the regulation of Ca2+ release from intact mitochondria, and may be relevant for a better understanding of the action of peroxovanadate in cells, where the compound can be insulin mimetic. Received 28 March 2002; received after revision 8 May 2002; accepted 15 May 2002  相似文献   

6.
Based on the findings that proinsulin C-peptide binds specifically to cell membranes, we investigated the effects of C-peptide and related molecules on the intracellular Ca2+ concentration ([Ca2+]i) in human renal tubular cells using the indicator fura-2/AM. The results show that human C-peptide and its C-terminal pentapeptide (positions 27–31, EGSLQ), but not the des (27–31) C-peptide or randomly scrambled C-peptide, elicit a transient increase in [Ca2+]i. Rat C-peptide and rat C-terminal pentapeptide also induce a [Ca2+]i response in human tubular cells, while a human pentapeptide analogue with Ala at position 1 gives no [Ca2+]i response, and those with Ala at positions 2–5 induce responses with different amplitudes. These results define a species cross-reactivity for C-peptide and demonstrate the importance of Glu at position 1 of the pentapeptide. Preincubation of cells with pertussis toxin abolishes the effect on [Ca2+]i by both C-peptide and the pentapeptide. These results are compatible with previous data on C-peptide binding to cells and activation of Na+,K+ATPase. Combined, all data show that C-peptide is a bioactive peptide and suggest that it elicits changes in [Ca2+]i via G-protein-coupled pathways, giving downstream enzyme effects. Received 13 May 2002; accepted 16 May 2002  相似文献   

7.
Zusammenfassung Der Ca2+-Transport und die Ca2+-aktivierte ATP Hydrolyse (ATP extra Spaltung) durch Membranen des cardialen sarkoplasmatischen Retikulums zeigen die gleiche Temperaturabhängigkeit. Die Aktivierungsenergie der Ca2+-Aufnahme und der ATP extra Spaltung, gemessen bei Anwesenheit von Oxalat, beträgt 16.65±0.87 und 17.93±0.49 Kcal/Mol–1.  相似文献   

8.
Using a newly developed microcalorimetric approach to assess the rate of energy expenditure for intracellular [Ca2+] homeostasis in isolated muscles at rest, we found this was lower inmdx than in control mouse muscles, by 62% and 29% in soleus and extensor digitorum longus, respectively. Differences in total and Ca2+-dependent rates of specific heat production betweenmdx and control were enhanced during sustained, KCl-induced stimulation of energy dissipation. These results suggest that the low sacroplasmic energy status of dystrophic muscles is not due to any excessive energy expenditure for intracellular [Ca2+] homeostasis.  相似文献   

9.
Nickel is considered to be a selective blocker of low-voltage-activated T-type calcium channel. Recently, the Ni2+-binding site with critical histidine-191 (H191) within the extracellular IS3–IS4 domain of the most Ni2+-sensitive Cav3.2 T-channel isoform has been identified. All calcium channels are postulated to also have intrapore-binding site limiting maximal current carried by permeating divalent cations (PDC) and determining the blockade by non-permeating ones. However, the contribution of the two sites to the overall Ni2+ effect and its dependence on PDC remain uncertain. Here we compared Ni2+ action on the wild-type “Ni2+-insensitive” Cav3.1w/t channel and Cav3.1Q172H mutant having glutamine (Q) equivalent to H191 of Cav3.2 replaced by histidine. Each channel was expressed in Xenopus oocytes, and Ni2+ blockade of Ca2+, Sr2+, or Ba2+ currents was assessed by electrophysiology. Inhibition of Cav3.1w/t by Ni2+ conformed to two sites binding. Ni2+ binding with high-affinity site (IC50 = 0.03–3 μM depending on PDC) produced maximal inhibition of 20–30 % and was voltage-dependent, consistent with its location within the channel’s pore. Most of the inhibition (70–80 %) was produced by Ni2+ binding with low-affinity site (IC50 = 240–700 μM). Q172H-mutation mainly affected low-affinity binding (IC50 = 120–160 μM). The IC50 of Ni2+ binding with both sites in the Cav3.1w/t and Cav3.1Q172H was differentially modulated by PDC, suggesting a varying degree of competition of Ca2+, Sr2+, or Ba2+ with Ni2+. We conclude that differential Ni2+-sensitivity of T-channel subtypes is determined only by H-containing external binding sites, which, in the absence of Ni2+, may be occupied by PDC, influencing in turn the channel’s permeation.  相似文献   

10.
We have analyzed the intracellular signals that allow lymphoblasts from Alzheimer’s disease (AD) patients to escape from serum deprivation-induced apoptosis. The following observations suggested that modulation of ERK1/2 activity by Ca2+/calmodulin (CaM) is involved in preventing apoptosis: (i) ERK1/2 activity seems to support lethality in control cells, as PD98059, the inhibitor of the activating MEK prevented cell death; (ii) control cells show a persistent and higher stimulation of ERK1/2 than that of AD cells in the absence of serum; (iii) CaM antagonists have no effects on control cells, but sensitize AD cells to death induced by serum withdrawal and increased ERK1/2 phosphorylation, and (iv) no apoptotic effects of CaM antagonists were observed in AD cells treated with PD98059. These results suggest the existence of an activation threshold of the ERK1/2 pathway setting by Ca2+/CaM-dependent mechanisms, which appears to be the critical factor controlling cell survival or death decision under trophic factor withdrawal. F. Bartolomé, N. de las Cuevas: These authors contributed equally to this work. Received 14 February 2007; received after revision 16 April 2007; accepted 23 April 2007  相似文献   

11.
Summary Exogenous cyclic AMP (cAMP) inhibits the Na+, K+-cotransport system and stimulates the Na+, K+-pump and Na+, Ca2+ exchange in mouse macrophages. These effects are enhanced by inhibition of phosphodiesterase with methylisobutylxanthine (MIX). MIX alone showed little or no effect. A similar response was observed after stimulation of endogenous production of cAMP by isoproterenol.  相似文献   

12.
In the presence of Zn2+ (0.3 mM), carbachol (10–6 M) or histamine (10–5 M) induced the phasic response in guinea-pig taenia caeci while the tonic response was markedly inhibited. However, when the muscles were kept in Zn2+-containing medium following the first stimulation with either carbachol or histamine, neither application of carbachol nor of histamine elicited another phasic contraction. Caffeine (25 mM) did not induce contraction in the presence of Zn2+. After the washing out of caffeine in the presence of Zn2+, however, the muscle did then develop the phasic response on the application of carbachol or histamine. In conclusion, Zn2+ did not affect the carbachol or histamine-induced Ca2+ release from the storage sites. However, when Zn2+ was continuously present, Ca2+ was not supplied to the storage sites. Furthermore, carbachol and histamine mobilized a common cellular Ca2+ store, but they activated Ca2+ release channels different from the ones activated by caffeine in the Ca2+ storage sites.  相似文献   

13.
Ca2+ signaling plays a crucial role in virtually all cellular processes, from the origin of new life at fertilization to the end of life when cells die. Both the influx of external Ca2+ through Ca2+-permeable channels and its release from intracellular stores are essential to the signaling function. Intracellular Ca2+ is influenced by mitogenic factors which control the entry and progression of the cell cycle; this is a strong indication for a role of Ca2+ in the control of the cycle, but surprisingly, the possibility of such a role has only been paid scant attention in the literature. Substantial progress has nevertheless been made in recent years in relating Ca2+ and the principal decoder of its information, calmodulin, to the modulation of various cycle steps. The aim of this review is to critically discuss the evidence for a role of Ca2+ in the cell cycle and to discuss Ca2+-dependent pathways regulating cell growth and differentiation. Received 2 March 2005; received after revision 9 May 2005; accepted 24 May 2005  相似文献   

14.
Activated receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain like (MLKL) are essential components of the necroptotic pathway. Phosphorylated MLKL (pMLKL) is thought to induce membrane leakage, leading to cell swelling and disintegration of the cell membrane. However, the molecular identity of the necroptotic membrane pore remains unclear, and the role of pMLKL for membrane permeabilization is currently disputed. We observed earlier that the phospholipid scramblase and ion channel TMEM16F/anoctamin 6 cause large membrane currents, cell swelling, and cell death when activated by a strong increase in intracellular Ca2+. We, therefore, asked whether TMEM16F is also central to necroptotic cell death and other cellular events during necroptosis. Necroptosis was induced by TNFα, smac mimetic, and Z-VAD (TSZ) in NIH3T3 fibroblasts and the four additional cell lines HT29, 16HBE, H441, and L929. Time-dependent changes in intracellular Ca2+, cell morphology, and membrane currents were recorded. TSZ induced a small and only transient oscillatory rise in intracellular Ca2+, which was paralleled by the activation of outwardly rectifying Cl? currents, which were typical for TMEM16F/ANO6. Ca2+ oscillations were due to Ca2+ release from endoplasmic reticulum, and were independent of extracellular Ca2+. The initial TSZ-induced cell swelling was followed by cell shrinkage. Using typical channel blockers and siRNA-knockdown, the Cl? currents were shown to be due to the activation of ANO6. However, the knockdown of ANO6 or inhibitors of ANO6 did not inhibit necroptotic cell death. The present data demonstrate the activation of ANO6 during necroptosis, which, however, is not essential for cell death.  相似文献   

15.
Among the heterogeneous population of circulating hematopoietic and endothelial progenitors, we identified a subpopulation of CD133+ cells displaying myogenic properties. Unexpectedly, we observed the expression of the B-cell marker CD20 in blood-derived CD133+ stem cells. The CD20 antigen plays a role in the modulation of intracellular calcium homeostasis through signaling pathways activation. Several observations suggest that an increase in intracellular calcium concentration ([Ca2+]i) could be involved in the etiology of the Duchenne muscular dystrophy (DMD). Here, we show that a CD20-related signaling pathway able to induce an increase in [Ca2+]i is differently activated after brain derived neurotrophic factor (BDNF) stimulation of normal and dystrophic blood-derived CD133+ stem cells, supporting the assumption of a “CD20-related calcium impairment-affecting dystrophic cells. Presented findings represent the starting point toward the expansion of knowledge on pathways involved in the pathology of DMD and in the behavior of dystrophic blood-derived CD133+ stem cells. Received 15 October 2008; received after revision 27 November 2008; accepted 05 December 2008  相似文献   

16.
Store-operated Ca2+ entry describes the phenomenon that connects a depletion of internal Ca2+ stores to an activation of plasma membrane-located Ca2+ selective ion channels. Tremendous progress towards the underlying molecular mechanism came with the discovery of the two respective limiting components, STIM and Orai. STIM1 represents the ER-located Ca2+ sensor and transmits the signal of store depletion to the plasma membrane. Here it couples to and activates Orai, the highly Ca2+-selective pore-forming subunit of Ca2+ release-activated Ca2+ channels. In this review, we focus on the molecular steps that these two proteins undergo from store-depletion to their coupling, the activation, and regulation of Ca2+ currents.  相似文献   

17.
Summary The stimulatory effect of nitro-compounds on arterial and hepatic guanylate cyclase became significantly depressed at 0.2 M and higher concentration of free Ca2+. The basal enzyme activity proved to be Ca2+-independent.This study was supported by the Anton Dreher-Foundation for Medical Research.  相似文献   

18.
Effects of extracellular magnesium ions ([Mg2+]o ) on intracellular free Mg2+ ([Mg2+]i ) and its subcellular distribution in single fission yeast cells, Schizosaccharomyces pombe, were studied with digital-imaging microscopy and an Mg2+ fluorescent probe (mag-fura-2). Using 0.44 mM [Mg2+]o , [Mg2+]i in yeast cells was 0.91±0.08 mM. Elevation of [Mg2+]o to 1.97 mM induced rapid (within 5 min) increments in [Mg2+]i (2.18±0.11 mM). Lowering [Mg2+]o to 0.06 mM, however, exerted no significant effects on [Mg2+]i (0.93±0.14 mM), at least for periods of up to 30 min. Irrespective of the [Mg2+]o used, the subcellular distribution of [Mg2+]i remained hetero geneous, i.e. where the sub-plasma membrane region >cytoplasm >nucleus. [Mg2+] in all three subcellular compartments increased significantly, two- to threefold, concomitant with [Mg2+]i when placed in 1.97 mM [Mg2+]o . We conclude that [Mg2+]i in fission yeast is maintained at a physiologic level when [Mg2+]o is low, but intracellular free Mg2+ rapidly rises when [Mg2+]o is elevated. Like most eukaryotic cells, yeast may have a Mg2+ transport system(s) which functions to maintain gradients of Mg2+ from the outside to inside the cell and among its subcellular compartments. Received 18 April 1996; received after revision 4 July 1996; accepted 26 July 1996  相似文献   

19.
Glycolysis is an evolutionary conserved metabolic pathway that provides small amounts of energy in the form of ATP when compared to other pathways such as oxidative phosphorylation or fatty acid oxidation. The ATP levels inside metabolically active cells are not constant and the local ATP level will depend on the site of production as well as the respective rates of ATP production, diffusion and consumption. Membrane ion transporters (pumps, exchangers and channels) are located at sites distal to the major sources of ATP formation (the mitochondria). We review evidence that the glycolytic complex is associated with membranes; both at the plasmalemma and with membranes of the endo/sarcoplasmic reticular network. We examine the evidence for the concept that many of the ion transporters are regulated preferentially by the glycolytic process. These include the Na+/K+-ATPase, the H+-ATPase, various types of Ca2+-ATPases, the Na+/H+ exchanger, the ATP-sensitive K+ channel, cation channels, Na+ channels, Ca2+ channels and other channels involved in intracellular Ca2+ homeostasis. Regulation of these pumps, exchangers and ion channels by the glycolytic process has important consequences in a variety of physiological and pathophysiological processes, and a better understanding of this mode of regulation may have important consequences for developing future strategies in combating disease and developing novel therapeutic approaches. Received 20 July 2007; received after revision 30 July 2007; accepted 17 August 2007  相似文献   

20.
Alcian blue and plumbagin induced transient Ca2+ release from fragmented sarcoplasmic reticulum. Dithiothreitol (DTT) and glutathione (GSH) partially blocked Ca2+ release induced by these oxidizing compounds. Pretreatment of alcian blue and plumbagin with DTT or GSH for more than 1 min was required to abolish the ability of the oxidizing compounds to release Ca2+. Mg2+ and ruthenium red completely blocked alcian blue-and plumbagin-induced Ca2+ release. These results suggest that oxidation of sulfhydryls on Ca2+ release channels induces Ca2+ release even in the presence of GSH in situ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号