首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 66 毫秒
1.
电力系统在周期性负荷扰动的作用下会发生混沌振荡,甚至由此而失去稳定.为抑制这种情况下的混沌振荡对电力系统的影响,利用支持向量机良好的非线性函数逼近和泛化能力,提出了最小二乘支持向量机(LS-SVM)的电力系统混沌振荡控制方法.运用最小二乘支持向量机对电力系统的动力学特性进行学习,得到训练好的电力系统LS-SVM模型,进而实现对电力系统混沌振荡的控制.该方法不需要被控混沌系统的解析模型,数值仿真结果表明该方法的可行性.  相似文献   

2.
基于混沌最小二乘支持向量机的软测量建模   总被引:1,自引:0,他引:1  
提出一种改进算法,用来解决现有最小二乘支持向量机方法在处理大规模样本软测量建模问题时出现的模型结构复杂、失去支持向量稀疏性且正规化参数和核参数难以确定等问题.对样本集进行预处理,通过计算样本间欧氏距离进行样本相似程度分析,去除样本集中1/3的样本以简化支持向量机模型结构并提高计算速度.定义了一种混沌映射构成混沌系统并分析了其遍历性.应用改进的混沌优化算法优化最小二乘支持向量机模型参数以提高模型的拟合精度和泛化能力.将改进算法用于丙烯腈收率软测量建模中,仿真实验结果表明:模型精度较高,泛化性能好,满足现场测量要求.  相似文献   

3.
混沌时间序列的最小二乘支持向量机预测   总被引:4,自引:0,他引:4  
提出了最小二乘支持向量机混沌时间序列预测方法,并研究了三种混沌信号的预测性能。该方法在优化指标中采用了平方项,且只有等式约束,将传统支持向量机求解二次规划问题转化为求解线性方程组,因而简化了计算复杂性。仿真实验结果表明该方法预测模型参数选择容易、在较大范围内取值时对预测误差影响很小,而且即使在输入维数m小于Takens嵌入定理所确定的维数时,也具有很好的预测性能。  相似文献   

4.
针对时变工业过程建模中存在的模型泛化性和适应性较低的问题,利用移动窗技术,通过使用多个核函数,提出了一种基于移动窗的多核最小二乘支持向量机(LSSVM)建模算法.该算法在最小二乘支持向量机算法基础上,利用多核组合代替单核,增强了模型的泛化能力;利用移动窗技术,增加了模型对时变工业过程的动态辨识能力及模型的更新效率.仿真实验结果表明,该算法具有更好的泛化性能.  相似文献   

5.
针对网络控制系统实时信号的传输问题,提出一种采用最小二乘支持向量机理论预测和补偿非理想条件下网络传输导致的不良影响,建立一个较通用网络控制系统模型的方法,并对所提出模型的正确性和可应用性进行验证.仿真结果表明,基于最小二乘支持向量机预测模型能在一定程度上提高网络控制系统的动态性和稳定性,弥补了周期性传输采样信号占用大量网络带宽和不必要网络通信的缺陷.  相似文献   

6.
通过计算机对人脸进行分析,从而确定身份的技术统称为人脸识别,其具体内容包括图像预处理、特征选择和提取、分类。首先介绍了支持向量机和最小二乘支持向量机的基本思想和数学模型,推导了最小二乘支持向量机的算法步骤,在对人脸图像进行预处理的基础上,采用奇异值分解扩展算法提取人脸特征,然后再采用上述算法对人脸图像进行分类。通过实验可知本文中的算法可以对人脸图像进行有效分类,对解决小样本分类问题是有效的、可行的。  相似文献   

7.
针对空间桁架结构的非线性因素导致其建模困难的问题,利用基于Hilbert变换的动力学系统非线性检测因子作为加权因子,提出了一种改进的加权最小二乘支持向量机非线性建模方法,不仅使支持向量机的解具有稀疏性和鲁棒性,而且对系统动力学参数变化敏感,从而能比较快速而精确地实现动力学系统的非线性动态建模.数值仿真和桁架结构建模试验结果表明,该方法能较好地模拟结构的非线性特性,适用于动力学系统的非线性动态建模.  相似文献   

8.
最小二乘支持向量机在人脸识别中的应用   总被引:4,自引:0,他引:4  
 支持向量机(SVM)模式识别方法具备良好的分类性能和鲁棒性,在介绍了典型支持向量机与最小二乘支持向量机(LS_SVM)原理的基础上,给出最小二乘支持向量机的算法实现过程,将其应用于人脸识别当中,取得较典型支持向量机在时间上较好的效果.在OPL人脸库中的实验结果表明,基于LS_SVM的人脸自动识别系统更能适用于实时性要求较高的场合.  相似文献   

9.
针对谷氨酸发酵过程一些关键参数不能在线测量而导致的建模精度不高问题,利用最小二乘支持向量机(LSSVM)和小波的理论,建立了一种新的模型.首先,选取Littlewood-Paley小波函数作为LS-WSVM的核函数,进而设计出最小二乘小波支持向量机(LS-WSVM),然后利用该算法对谷氨酸发酵过程进行建模.通过实际应用,实现了对残糖浓度、菌体浓度、谷氨酸浓度等不能在线测量变量的较准确预测,相对于LSSVM建模而言,提高了一个数量级,预测误差也明显得到改善,说明了该建模方法的有效性,具有一定的推广和应用价值.  相似文献   

10.
针对工程造价变化的时变性、混沌性,提出一种混沌理论和最小二乘支持向量机的工程造价预测模型.首先收集工程造价历史样本并进行相应的预处理,然后根据混沌理论确定最优延迟时间和嵌入维数,重建工程造价的训练集和测试集,最后用最小二乘支持向量机建立工程造价预测模型,并采用具体建筑工程造价数据进行仿真测试.结果表明,相对其他工程造价预测模型,该模型可以很好地反映工程造价的变化趋势,提高工程造价的预测准确性.  相似文献   

11.
Artificial Neural Networks (ANNs) such as radial basis function neural networks (RBFNNs) have been successfuUy used in soft sensor modeling. However, the generalization ability of conventional ANNs is not very well. For this reason, we present a novel soft sensor modeling approach based on Support Vector Machines (SVMs). Since standard SVMs have the limitation of speed and size in training large data set, we hereby propose Least Squares Support Vector Machines (IS_ SVMs) and apply it to soft sensor modeling. Systematic analysis is performed and the result indicates that the proposed method provides satisfactory performance with excellent approximation and generalization property. Monte Carlo simulations show that our soft sensor modeling approach achieves performance superior to the conventional method based on RBFNNs.  相似文献   

12.
将最小二乘支持向量机引入到小字符集压印字符识别中.首先介绍最小二乘支持向量机的基本原理和主要算法,然后在实验中采用最小二乘支持向量机训练软件,针对标牌上的压印字符的数字集进行仿真,同时与神经网络等其他分类方法进行比较.实验结果表明此方法的识别率较高,在小字符集识别中具有较强的实用性.  相似文献   

13.
针对目前常采用高斯核的最小二乘支持向量机(LS-SVM)不能对信号多尺度逼近的问题,提出一种采用尺度核的LS-SVM.首先,在再生核希尔伯特空间的框架下构建了一种点积型的尺度核函数,它满足Mercer条件,并具备平移和扩张的特性,是尺度子空间的一组完备的基.然后,利用拉格朗日乘子法求解LS-SVM逼近的约束规划问题.在结构风险最小化逼近准则下获得了逼近系数.与传统核函数相比,采用尺度核的LS-SVM可以实现多尺度逼近任意信号,且应用时仅需对尺度参数调节选优,简便、实用.实验结果表明:所提算法的逼近性能与小波核性能相当;与传统的高斯核函数相比,其均方根误差提高8.4%.  相似文献   

14.
针对最小二乘支持向量机(LS-SVM)在进行回归预测时存在的稀疏性缺陷问题,采用固定尺度最小二乘支持向量机,即固定支持向量数量进行改进。仿真结果表明:固定尺度最小二乘支持向量机在训练各种样本数据集时,有效地避开了LS-SVM中的稀疏性问题,且训练速度快,同时具有良好的预测精度。  相似文献   

15.
基于最小二乘支持向量机的非线性通用模型自适应控制   总被引:1,自引:0,他引:1  
将模型参考自适应控制方法应用到基于最小二乘支持向量机的通用模型控制策略中,将非线性过程模型应用逆系统的方法可以在控制算法中直接嵌入过程模型,从而克服了通用模型控制器要求过程一阶微分模型应该有显式解的局限性,保证了通用模型控制策略的可实现性.另一方面,加入模型参考自适应环节,提高了该控制器的实时性和鲁棒性,其参数具有明显的物理意义,参数整定方便.仿真实验结果验证了该控制策略的有效性和更好的鲁棒性.  相似文献   

16.
基于LS-SVM的无人机费用预测   总被引:1,自引:0,他引:1       下载免费PDF全文
无人机费用预测是在装备研制设计阶段就必须考虑的重要问题。针对无人机费用预测小样本、具有不确定性等特点,提出了基于最小二乘支持向量机(LS-SVM,Least Squares Support Vector Machines)的无人机费用预测模型,并应用于研制费用、维修保障费用预测。应用结果表明,LS-SVM具有较高的费用预测精度。  相似文献   

17.
在永磁同步电机伺服控制系统中,为了抑制由电机参数变化导致的控制精度下降,引入了电机参数辨识修正调节器参数.为了增强辨识系统的抗干扰能力,提出将多新息方法与限定记忆最小二乘法相结合,增加单步递推数据量,对电机参数进行辨识.通过采集电机运行下的电压、电流及转速信号,对电机定子电阻、交直轴电感、转子磁链参数进行同时在线辨识....  相似文献   

18.
最小二乘小波支持向量机在非线性系统辨识中的应用   总被引:24,自引:0,他引:24  
基于小波分解和支持向量核函数的条件,提出了一种多维允许支持向量小波核函数.该核函数不仅是近似正交的,而且适用于信号的局部分析、信噪分离和突变信号的检测,从而提高了支持向量机的泛化能力.基于小波核函数和正则化理论提出了最小二乘小波支持向量机(LS WSVM)并将LS WSVM用于非线性系统的辨识,提高了辨识效果,减少了计算量.仿真结果表明:LS WSVM在同等条件下比传统支持向量机的辨识精度提高约13 1%,因而更适合于工程应用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号