首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wu  YaPing  Gao  KunShan 《科学通报(英文版)》2010,55(32):3680-3686
We carried out short term pCO2/pH perturbation experiments in the coastal waters of the South China Sea to evaluate the combined effects of seawater acidification (low pH/high pCO2) and solar UV radiation (UVR, 280–400 nm) on photosynthetic carbon fixation of phytoplankton assemblages. Under photosynthetically active radiation (PAR) alone treatments, reduced pCO2 (190 ppmv) with increased pH resulted in a significant decrease in the photosynthetic carbon fixation rate (about 23%), while enriched pCO2 (700 ppmv) with lowered pH had no significant effect on the photosynthetic performance compared to the ambient level. The apparent photosynthetic efficiency decreased under the reduced pCO2 level, probably due to C-limitation as well as energy being diverged for up-regulation of carbon concentrating mechanisms (CCMs). In the presence of UVR, both UV-A and UV-B caused photosynthetic inhibition, though UV-A appeared to enhance the photosynthetic efficiency under lower PAR levels. UV-B caused less inhibition of photosynthesis under the reduced pCO2 level, probably because of its contribution to the inorganic carbon (Ci)-acquisition processes. Under the seawater acidification conditions (enriched pCO2), both UV-A and UV-B reduced the photosynthetic carbon fixation to higher extents compared to the ambient pCO2 conditions. We conclude that solar UV and seawater acidification could synergistically inhibit photosynthesis.  相似文献   

2.
Randomly oriented ZnO microsheets were successfully self-assembled on TiO2 nanoparticle (TN) film to act as the scattering layer via a cathodic electrodeposition process. The light scattering properties of ZnO microsheets were studied by UV-Vis spectrometer in the 400–800 nm wavelength range. It was found that ZnO microsheets exhibited excellent ability to scatter the incident light for ZnO microsheet-TiO2 nanoparticle (ZT) composite films. The results showed that dye-sensitized solar cells (DSSCs) fabricated with ZT composite films showed higher short-circuit density (Jsc) and conversion efficiency than TN-based DSSCs, due to the light scattering properties of ZnO microsheets.  相似文献   

3.
In order to study the functions of cytochrome b559 (Cyt b559) in photosystem two (PSII) activity, mutant S24F of Chlamydomonas reinhardtii was constructed using site directed mutagenesis, in which Serine24 (Ser24) locating downstream of Histidine23 (His23) in α subunit of Cyt b559 was replaced by Phenylalanine (Phe). Physiological and biochemical analysis showed that mutant S24F could be grown photoautotrophically or photoheterotrophically. However, their growth rate was slower either on HSM or TAP medium than that of the control; Analysis of PSII activity revealed that its oxygen evolution was about 71% of wild type (WT); The Photochemical efficiency of PSII (Fv/Fm) of S24F was reduced 0.23 compared with WT; S24F was more sensitive to strong light irradiance than the wild type; Furthermore, SDS-PAGE and Western-blotting analysis indicated that the expression levels of α subunit of Cyt b559, LHCII and PsbO of S24F were a little less than those of the wild type. Overall, these data suggests that Ser24 plays a significant role in making Cyt b559 structure maintain PSII complex activity of oxygen evolution although it is not directly bound to heme group.  相似文献   

4.
A T-DNA insertion mutant AtctpA1 was identified to study the physiological roles of a carboxyl-terminal processing protease (CtpA) homologue in Arabidopsis. Under normal growth conditions, disruption of AtctpA1 did not result in any apparent alterations in growth rate and thylakoid membrane protein components. However the mutant plants exhibited increased sensitivity to high irradiance. Degradation of PSII reaction center protein D1 was accelerated in the mutant during photoinhibition. These results demostrated that AtctpA1 was required for efficient repair of PSII in Arabidopsis under high irradiance.  相似文献   

5.
Fabrication and S-F-codoping of TiO2 nanotubes were carried out by a one-step electrochemical anodization process to extend the photoresponse of TiO2 to the visible-light region. The prepared samples were annealed in air and detected by SEM, XRD, XPS and UV-vis DRS spectrophotometer. The results showed that the average tube diameter of the nanotubes was 150 nm and the average tube length was 400 nm. The doped TiO2 nanotubes exhibited strong absorption in visible-light region. Photoelectrocatalytic degradation efficiency of 4-CP over S-F-codoped TiO2 nanotubes was 39.7% higher than that of only-F-doped sample. Moreover, sulfur and fluorine codoped into substitutional sites of TiO2 had been proven to be indispensable for strong response and high photocatalytic activity under visible light, as assessed by XPS.  相似文献   

6.
Ecosystems are supported by organic carbon from two distinct sources. Endogenous carbon is produced by photosynthesis within an ecosystem by autotrophic organisms. Exogenous carbon is produced elsewhere and transported into ecosystems. Consumers may use exogenous carbon with consequent influences on population dynamics, predator-prey relationships and ecosystem processes. For example, exogenous inputs provide resources that may enhance consumer abundance beyond levels supported by within-system primary production. Exogenous fluxes of organic carbon to ecosystems are often large, but this material is recalcitrant and difficult to assimilate, in contrast to endogenously produced organic matter, which is used more easily. Here we show, by the experimental manipulation of dissolved inorganic (13)C in two lakes, that internal primary production is insufficient to support the food webs of these ecosystems. Additions of NaH(13)CO(3) enriched the (13)C content of dissolved inorganic carbon, particulate organic carbon, zooplankton and fish. Dynamics of (13)C indicate that 40-55% of particulate organic carbon and 22-50% of zooplankton carbon are derived from terrestrial sources, showing that there is significant subsidy of these ecosystems by organic carbon produced outside their boundaries.  相似文献   

7.
A carbon isotope record of CO2 levels during the late Quaternary   总被引:8,自引:0,他引:8  
Jasper JP  Hayes JM 《Nature》1990,347(6292):462-464
Analyses of gases trapped in continental ice sheets have shown that the concentration of CO2 in the Earth's early atmosphere increased from 180 to 280 p.p.m. during the most recent glacial-interglacial transition. This change must have been driven by an increase in the concentration of CO2 dissolved in the mixed layer of the ocean. Biochemical and physiological factors associated with photosynthetic carbon fixation in this layer should lead to a relationship between concentrations of dissolved CO2 and the carbon isotopic composition of phytoplanktonic organic material, such that increased atmospheric CO2 should enhance the difference in 13C content between dissolved inorganic carbon and organic products of photosynthesis. Here we show that a signal related to atmospheric CO2 levels can be seen in the isotope record of a hemipelagic sediment core, which we can correlate with the CO2 record of the Vostok ice core. Calibration of the relationship between isotope fractionation and CO2 levels should permit the extrapolation of CO2 records to times earlier than those for which ice-core records are available.  相似文献   

8.
Phycobilisomes (PBSs) are the main accessory light-harvesting complexes in cyanobacteria and their movement between photosystems (PSs) affects cyclic and respiratory electron transport. However, it remains unclear whether the movement of PBSs between PSs also affects the transthylakoid proton gradient (ΔpH). We investigated the effect of PBS movement on ΔpH levels in a unicellular cyanobacterium Synechocystis sp. strain PCC 6803, using glycinebetaine to immobilize and couple PBSs to photosystem II (PSII) or photosystem I (PSI) by applying under far-red or green light, respectively. The immobilization of PBSs at PSII inhibited decreases in ΔpH, as reflected by the slow phase of millisecond-delayed light emission (ms-DLE) that occurs during the movement of PBSs from PSII to PSI. By contrast, the immobilization of PBSs at PSI inhibited the increase in ΔpH that occurs when PBSs move from PSI to PSII. Comparison of the changes in ΔpH and electron transport caused by the movement of PBSs between PSs indicated that the changes in ΔpH were most likely caused by respiratory electron transport. This will further improve our understanding of the physiological role of PBS movement in cyanobacteria.  相似文献   

9.
Polyoxometalate (POM) has promising antiviral activities. It shows broad-spectrum inhibiting ability, high efficiency, and low tox-icity. Experimental assays show that titanium containing polyoxotungstates have anti-influenza-virus activity. In this paper, the bind-ing mechanisms of five isomers of di-Ti-substituted polyoxotungstate, [α-1,2-PTi2W10O40]7– (α-1,2), [α-1,6-PTi2W10O40]7– (α-1,6), [α-1,5-PTi2W10O40]7– (α-1,5), [α-1,4-PTi2W10O40]7– (α-1,4) and [α-1,11-PTi2W10O40]7– (α-1,11), to five subtypes of influenza virus A neuraminidase (FluV-A NA) were investigated in the context of aqueous solution by using molecular docking and molecular dynamics studies. The results show that the isomer α-1,2 is superior to other isomers as a potential inhibitor to neuraminidase. The positively charged arginine residues around the active site of NA could be induced by negatively charged POM to adapt themselves and could form salt bridge interactions and hydrogen bond interactions with POM. The binding free energies of POM/NA complexes range from –5.36 to –8.31 kcal mol–1. The electrostatic interactions are found to be the driving force during the binding process of POM to NA. The conformational analysis shows that POM tends to bind primarily with N1 and N8 at the edge of the active pocket, which causes the conformational change of the pincers structure comprising residue 347 and loop 150. Whereas, the active pockets of N2, N9 and N4 are found to be more spacious, which allows POM to enter into the active pockets directly and anchor there firmly. This study shows that negatively charged ligand as POM could induce the reorganization of the active site of NA and highlights POM as a promising inhibitor to NA despite the ever increasing mutants of NA.  相似文献   

10.
The concentrations of CH4 and SO4^2- in pore-water and the carbon isotope compositions of total dissolved inorganic (TCO2) and OH4 were determined for three coastal sedimentary cores collected from Qi'ao Island (Pearl River Estuary), southern China. Results show that methane concentration changes dramatically at the base of the sulfate-reducing zone and sulfate concentration gradients are linear for all stations. In addition, the carbon isotope of methane becomes heavier at the sulfate-methane transition (SMT), which causes ∑CO2-δ^13C to become the minimum. The geochemical profiles of pore-water render indirect evidence for anaerobic oxidation of methane (AOM). Based on numerical modeling of AOM and sulfate-reducing rates, the portion of total sulfate reduction occurring via AOM is 9.0%, 84% and 45.5%, respectively, and the percentage of TCO2 added to the pore-water is 4.7%, 72.4% and 29.45% correspondingly for three sites. Furthermore, it is found that the methane concentration, methane diffusive flux and the depth of SMT are controlled by the quantity and quality of sedimentary organic matter incorporated into the sediments. The great amount of organic material is favorable for rapid depletion of sulfate via sedimentary organic matter degradation, and on the other hand, causes the increase of the methane flux in the SMT, which results in a portion of sulfate reduction supported by AOM. Accordingly, the SMT was shifted towards the sediment surface.  相似文献   

11.
Two tree-ring MXD (maximum latewood density) chronologies of Abies fabri were developed from the eastern slopes of Gongga Mountain, and a regional chronology (RC) was established based on the two MXD chronologies. There were significant positive correlations between the three MXD chronologies and August–September temperature, and the RC had the highest correlation (r=0.733, n=48, P<0.001) with mean August–September temperature. Based on growth-climate analyses, we reconstructed mean August–September temperature during the past 171 years for the study area. The reconstruction explained 53.5% of the instrumental temperature variance during the period 1960–2007 (F=52.8, R2adj =52.4%). In the past 171 years, there were 22 very warm years and 23 very cold years, four cold periods (1837–1842, 1884–1891, 1899–1905 and 1984–1989) and three warm periods (1966–1973, 1916–1924 and 1876–1881). Our reconstruction was validated by other tree ring-based temperature reconstructions from the surrounding area and documented climate disaster events.  相似文献   

12.
A detailed theoretical study on structural, electronic and optical properties of Mg2Si under the isotropic lattice deformation was performed based on the first-principles pseudopotential method. The results show that the isotropic lattice deformation results in a linear decrease in the energy gap for the direct Γ15–Γ1 and indirect Γ15–L1 transitions from 93% to 113%, while the indirect band gap Γ15–X1 increases from 93% to 104% and then reduces over 104%. When the crystal lattice is 93% compressed and 113% stretched, the magnesium silicide is a zero-gap semiconductor. Furthermore, the isotropic lattice deformation makes the dielectric function shift and the static dielectric constant change.  相似文献   

13.
Photosynthetic inorganic carbon utilization was investigated in two cyanobacteria Microcystis aeruginosa and Synechocystis PCC6803 grown in standing culture. Photosynthetic rates for the two algae reached about 10 times the theoretical CO2 supply rate at low dissolved inorganic carbon (DIC) of 100 μmol/L, and the rates were unaffected by the addition of 20 mmol/L Na+, indicating that the two algae possessed Na+-independent HCO-3 utilization for photosynthesis under low DIC. Their photo- synthetic rates at low DIC were inhibited by higher Cl- and the degrees of inhibition were increased with the rise of CI- concentration, and in the presence of Diphenylamine-2-carboxylate (DPC), a reported Cl- channel inhibitor, the rates decreased by 74%-82%, implying that putative DPC-sensitive Cl- channels participate in Na+-independent HCO3- uptake for photosynthesis. The experiment of intracellular 14C-DIC accumulation for photosynthesis showed that internal DIC pools decreased by about 80% with 200 μmol/L DPC and by 64%-70% with 100 mmol/L Cl-. The experiment of chlorophyll a fluorescence quenching showed that initial rates and extents of fluorescence quenching obviously decreased with 200 μmol/L DPC or 100 mmol/L Cl-. The two experiments gave further evidence that putative DPC-sen- sitive Cl- channels participate in Na+-independent HCO-3 uptake for photosynthesis in the two algae grown in standing culture.  相似文献   

14.
Based on continuous three-year measurements (from 2004 to 2007) of eddy covariance and related environmental factors, envi-ronmental controls on variation in soil respiration (Rs) during non-growing season were explored in a maize agroecosystem in Northeast China. Our results indicated that during non-growing seasons, daily Rs was 1.08–4.08 g CO2 m–2 d–1, and the lowest occurred in late November. The average Rs of non-growing season was 456.06 ± 20.01 g CO2 m–2, accounting for 11% of the gross primary production (GPP) of the growing season. Additionally, at monthly scale, the lowest value of Rs appeared in January or February. From the beginning to the end of non-growing season, daily Rs tended to decrease first, and then increase to the highest. There was a significant quadratic curve relationship between Rs and soil temperature at 10 cm depth when soil temperature was more than 0°C (P<0.001), with the explaining ratio of 38%–70%. When soil water content was more than 0.1 m3 m–3, soil moisture at 10 cm depth was significantly parabolically correlated with Rs (P<0.001), explaining the rate of 18%–60%. Based on all the data of soil temperature of more than 0°C, a better model for Rs was established by coupling soil temperature and moisture, which could explain the rate of up to 53%–79%. Meanwhile, the standard error of regression estimation between the values of prediction and observation for Rs could reach 2.7%–11.8%. Rs in non-growing season can account for 22.4% of Rs in growing season, indicating that it plays a critical role in assessing the carbon budget in maize agroecosystem, Northeast China.  相似文献   

15.
The rate constant for the reaction of OH radicals and hydrogen sulfide (H2S) was studied in different bath gases (including N2, air, O2 and He) by using relative technique at 298 K. The small difference of the measured rate constants between N2 and those with the presence of O2 suggested possible influence of HS self reaction. Further experiments with NOx presence for scavenging HS demonstrated this assumption. The rate constant of (5.48±0.12) ×10–12 cm3 molecule–1 s–1 obtained with 4.09 ×10–4 mol m3 NO presence may be accurate for estimating the atmospheric lifetime of H2S. The results provided circumstantial evidence that the rapid reaction of HS with N2O is suspected.  相似文献   

16.
Zn-doped titanium oxide (TiO2) nanotubes electrode was prepared on a titanium plate by direct anodic oxidation and immersing method in sequence. Field emission scanning electron microscopy (FESEM) showed that the Zn-doped TiO2 nanotubes were well aligned and organized into high density uniform arrays with diameter ranging from 50 to 90 nm. The length and the thickness were about 200 and 15 nm respectively. TiO2 anatase phase was identified by X-ray diffraction (XRD). X-ray photoelectronspectroscopy (XPS) indicated that Zn ions were mainly located on the surface of TiO2 nanotubes in form of ZnO clusters. Compared with TiO2 nanotubes electrode, about 20 nm red shift in the spectrum of UV-vis absorption was observed. The degradation of pentachlorophenol (PCP) in aqueous solution under the same condition (initial concentration of PCP: 20 mg/L; concentration of Na2SO4:0.01 mol/L and pH: 7.03) was carried out using Zn-doped TiO2 nanotubes electrode and TiO2 nanotubes electrode. The degradation rates of PCP using Zn-doped TiO2 nanotubes electrode were found to be twice and 5.8 times as high as that using TiO2 nanotubes electrode by UV radiation (400 μw/cm^2) and visible light radiation (4500 μw/cm^2), respectively. 73.5% of PCP was removed using Zn-doped TiO2 nanotubes electrode against 45.5% removed using TiO2 nanotubes electrode in 120 min under UV radiation. While under visible light radiation, the degradation efficiency of PCP was 18.4% using Zn-doped TiO2 nanotubes electrode against 3.2% using TiO2 nanotubes electrode in 120 min. The optimum concentration of Zn doping was found to be 0.909%. The PCP degradation efficiencies of the 10 repeated experiments by Zn-doped TiO2 nanotubes electrode were rather stable with the deviation within 3.0%.  相似文献   

17.
Effects of solar ultraviolet radiation (UVR) on Spirulina platensis were studied by investigating its photochemical efficiency, photosynthetic pigments and biomass production while exposed to full spectrum solar radiation or depleted of UVR for understanding how and to what extent UVR influences its photosynthe tic physiology and production. It was found that UVR brought about an extra inhibition of photochemical efficiency by 26%—30%. The greatest inhibition of pho tochemical efficiency in S. platensis was observed at noontime, and then recovered to some extent in late afternoon no matter which treatment they were exposed to. The contents of chlorophyll a, phycocyanin and carotenoids increased during initial stage of the exposure, but decreased with elongated exposure. UVR decre ased the biomass yield by about 6%. It indicated that filtering out UVR of solar radiation would raise the productivity of S. platensis, which is an important factor that should be considered in the production.  相似文献   

18.
An extreme flood event with a frequency of nearly 200 year occurred in June of 2005 in the Xijiang River, the main trunk stream of the Zhujlang River. Samples were systematically collected during the flood event, and water quality parameters, including total suspended sediment (TSS), dissolved inorganic carbon (DIC), dissolved organic carbon (DOC), and particulate organic carbon (POC) were analyzed, and riverine carbon concentrations associated with its changing pattern through the flood process were discussed. These parameters reflect the changes in basin surface flow and subsurface flow during the flood. This flood event influenced annual flux estimations of POC, DOC, and DIC to great extents. Based on carbon flux estimations for the year 2005 and the flood event (June 21-28) in the Xijiang River, it was found that DIC, DOC, and POC fluxes during '05.6' flood event are 1.52×10^6g.km^-2.a^-1, 0.24×10^6 g.km^-2.a^-1, and 0.54×10^6 g.km^-2.a^-1, and account for 14.87%, 24.75% and 44.89% of the annual fluxes in 2005, respectively. The results suggested that carbon exports during extreme flood events had great contributions to the total carbon fluxes and composition of various carbon components, being important for accurate estimates of annual carbon fluxes in rivers with frequent floods.  相似文献   

19.
The fluorescence emission from fluoroquinolones is shown to be associated with the substituted quinoline portion of the molecule. Neutral, anionic, zwitterionic and cationic forms of the fluorophore are proposed to account for the fluorescent behavior in aqueous and organic media of different acidities. In aqueous solution a ground-state pKa was observed for NFX and CPFX from a study of the pH vs. fluorescence profile with excitation at 331 nm, the ground-state microscopic dissociation constents for NFX or CPFX were determined. The causes of fluorescence changing were explained. The optimum condition for the fluorimetric determination of NFX, CPFX is an acidic medium (pH=2.0∼4.0) with λex=280 nm or 331 nm and λem=445 nm. Supported by the National Natural Science Foundation of China Huang Zuyun: born in Aug. 1963. Ph. D graduate student  相似文献   

20.
A T-DNA insertion mutant AtctpA1 was identified to study the physiological roles of a carboxyl-terminal processing protease (CtpA) homologue in Arabidopsis. Under normal growth conditions, disruption of AtctpA1 did not result in any apparent alterations in growth rate and thylakoid membrane protein components. However the mutant plants exhibited increased sensitivity to high irradiance. Degradation of PSII reaction center protein D1 was accelerated in the mutant during photoinhibition. These results demostrated that AtctpA1 was required for efficient repair of PSII in Arabidopsis under high irradiance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号