首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
采用水热法以硝酸锌为原料,尿素为沉淀剂,同时加入表面活性剂,来制备绣球形纳米氧化锌。用SEM对制备的绣球形纳米氧化锌进行表征,发现得到绣球形氧化锌是由片状氧化锌自组装而成。通过改变锌盐的浓度、尿素的含量、反应时间、反应温度等条件,研究了这些条件对所得产物形貌的影响,并探讨了绣球形氧化锌的形成机理。在温度为120℃、时间为3~5h、锌盐的浓度为1.2mol/L条件下得到片状纳米氧化锌。随着锌盐浓度的增加,这些纳米片自组装成了绣球形氧化锌。  相似文献   

2.
采用直接沉淀法,在特定超声频率下制得超细氧化锌产品。研究了3种沉淀剂通过超声波后对制备超细氧化锌产品的影响,经超声制备的产品分散性好、粒度小。确定了最佳超声时间为50min,超声强度为40%。通过SEM检测可知,在最佳条件下制得的超细氧化锌产品为类球形,晶粒内部有中空孔洞,其粒径约为200nm。  相似文献   

3.
两室电化学沉淀法制备超细氧化锌粉体   总被引:1,自引:0,他引:1  
针对传统的超细氧化锌粉体制备过程存在设备要求严格、操作条件复杂和需外加分散剂等问题,采用以阳离子交换膜为隔膜的两室电化学沉淀法,控制阴极电流密度在50~150 A/m2,阴极产生的OH-与通过阳离子交换膜迁移进入阴极室的Zn2+相结合得到氢氧化锌沉淀。该沉淀物经过350℃焙烧2 h后得到氧化锌粉体。由TEM和XRD分析可知:氧化锌粉体颗粒随着阴极电流密度增加而逐渐降低,当阴极电流密度达到150 A/m2时,获得的氧化锌粉体粒度为50~80 nm,为六方晶系结构。实验研究表明:该两室电化学沉淀法具有操作条件简单、设备要求不高、不需外加化学分散剂等优点,是制备超细氧化锌粉体的有效方法。  相似文献   

4.
包头钢铁公司的平炉尘含铁量高.粒径微细,以γ-Fe2O3为主.经过提纯分级可以作为生产超细磁性材料的原料.研究了平炉尘在油酸钠分散条件下制备超细Fe3O4.结果表明.加入表面活性剂可以降低超微粒子的表面能,减少其团聚倾向.得到粒径更细且均匀的超细Fe3O4粉末.  相似文献   

5.
采用反相微乳液在水热条件下,制备出了片状的氧化锌纳米材料,并掺杂少量稀土镧元素,研究了掺杂量对纳米氧化锌光学性能的影响,利用X射线衍射(XRD)、扫描电镜(SEM)和荧光光谱分析(PL)对所得样品进行了表征,结果表明镧的掺杂可以对纳米氧化锌的光性能有积极的影响,掺杂量为La/Zn at.%=0.025时,发光峰强度较强.  相似文献   

6.
采用CFD-DEM耦合计算模型,利用DEM软件建立大粒径(2 cm)、非球体岩屑颗粒的离散元模型,与FLUENT实现无缝耦合并行计算,颗粒间相互作用采用Hertz-Mindlin弹性接触模型,对大粒径的、非常规岩屑颗粒在水平井段的运移规律进行了数值模拟计算。基于钻井实测数据,建立水平井段环空内含不同形状(片状,立方体状及球状)相同等效球体粒径颗粒的计算模型,展示了井眼环空内颗粒运移、沉积状态,对环空钻井液流速、不同形状的岩屑颗粒运移速度进行了计算分析,本文还计算得到片状大粒径岩屑含量对钻井液携岩效果的影响规律。结果显示:2 cm等效体积球体粒径的颗粒在井眼环空内的运移状态较差,出现局部堆积;立方体状颗粒的运移效果最差,片状颗粒次之;在所选用计算条件下,片状颗粒含量大于10%时会加剧削弱携岩效果。计算结果可对钻井携岩问题的研究提供一定的参考价值。  相似文献   

7.
温度500℃时,在CuSO4浸蚀过的锌箔上用直接氧化法制取纳米氧化锌。用扫描电子显微镜、X射线衍射仪和透射电子显微镜分别对其形貌、物相、微观结构进行表征和分析。研究结果表明:在500℃氧化硫酸铜浸蚀锌箔可以得到较好的纳米片状结构。经过分析发现氧化锌纳米片厚度为50~100 mm,它由晶粒尺寸10nm的六方晶体组成。用直接氧化法在CuSO4浸蚀过的锌箔可实现低温条件下制备出纳米片材料,将来可能会成为一种制备纳米氧化锌材料的重要方法。  相似文献   

8.
超细氧化铁黄的制备   总被引:2,自引:0,他引:2  
对超细氧化铁黄的人工合成工艺所进行的研究,是在优化工艺条件下,通过在反应阶段加入表面活性剂以对颜料颗粒作表面处理,从而得到粒度均匀、性能优良的超细氧化铁黄。电镜分析表明,颗粒的直径为0.1 ̄1μm。  相似文献   

9.
本文利用化学浴沉积法制备了片状氧化锌纳米粒子。在室温下,利用X射线衍射谱,扫描电镜和光致发光谱对氧化锌纳米片进行了表征。结果表明,氧化锌纳米片最强的衍射峰与<001>晶面相对应,显示出与普通氧化锌不同的明显的择优取向;片状氧化锌的尺寸为1000 nm×600 nm×60 nm;结果显示,刚制备的氧化锌的光谱包括一个紫外发光峰和一个蓝绿发光峰。片状氧化锌的生长分两个阶段:第一阶段,大量的乙酸锌前驱体在75℃通过水热分解反应沉积为氧化锌;第二阶段,氧化锌在低温下溶解,也称为老化阶段。  相似文献   

10.
氧化锌薄膜的电化学交流阻抗法研究   总被引:1,自引:0,他引:1  
通过电化学交流阻抗技术对不同电流密度、沉积时间、电解液浓度和溶液温度下制备的氧化锌薄膜进行了表征,结果表明不同条件下制备的氧化锌薄膜的结构不尽相同,但基本上都是内层致密、外层疏松的双层结构.  相似文献   

11.
唐波  吴雪锋  赵洪山  李泽  肖东 《科学技术与工程》2023,23(28):12031-12037
深层油气勘探开发过程中常面临高温高压的挑战,钻井液在高温高压等复杂工况下,其性能会发生改变,研究钻井液在复杂工况下的流动摩阻变化规律,能为特深井钻井提速及井控提供理论基础。根据实际工况要求,建立了高温高压钻井液循环流动摩阻测试装置,实验研究了温度、压力、固相颗粒及含气率对钻井液流动摩阻的影响,采用多元回归方法拟合并绘制温压摩阻系数图版,能更好阐述温压与钻井液流动摩阻的定量关系。结果表明:顺北区块钻井液流动摩阻随温度增大而减小,随压力增大而增大,摩阻系数图版能更准确体现摩阻系数与温压的定量关系,固体颗粒含量对流动摩阻影响不大,钻井液流动摩阻随着含气率增加而增大。该实验装置与分析方法,对于研究复杂工况下钻井液流动摩阻变化规律具有重要意义。  相似文献   

12.
使用 F C P 2000 泥饼针入度仪,对吐哈油田常用泥浆体系进行系统评价实验,建立了反映泥饼不同力学特征的泥饼层状结构理论模型.认识到影响泥饼实厚的最主要因素是钻井液的固相含量,但只有增加级配合理的惰性粒子而不是膨润土才能切实提高泥饼的综合质量,聚合物稀释剂和包被剂对泥饼实厚有重要影响,但影响规律视其种类和加量的不同而有很大的变化,主要取决于不同条件下聚合物分子与固相颗粒的不同作用机理.对水基钻井液体系而言,泥饼实厚为0.5 ~ 1.5m m 是较合适的.  相似文献   

13.
钻井液的低温流变特性是冻土天然气水合物钻探研究中的关键问题之一。将纳米材料应用于植物胶无固相钻井液体系;并对其低温流变特性进行专门研究具有重要意义。以KL植物胶与瓜尔胶为研究对象,采用理论分析与试验研究相结合的方法,开展了纳米植物胶钻井液低温流变特性研究。首先,通过试验分别获得了两种纳米植物胶钻井液的优化配方。然后,试验绘制其剪切应力-剪切速率变化曲线;并应用回归分析法和最小二乘法,分别采用宾汉模式、冥律模式、卡森模式以及赫-巴模式对植物胶钻井液在不同温度条件下的试验结果进行回归拟合,对其流变模式进行探讨。分析结果表明,冥律模式是描述纳米植物胶钻井液低温流变性能的最佳模式。最后应用该模式对所研究的钻井液进行了低温流变性能表征。  相似文献   

14.
两性离子聚合物钻井液低温流变特性研究   总被引:1,自引:1,他引:0  
两性离子聚合物钻井液在高原冻土钻探的成功应用对于实现钻井液的低温流变调控意义重大。以HT为主处理剂的两性离子聚合物钻井液作为研究对象,对钻井液在低温条件下的流变性能进行了测试。利用多元回归分析和最小二乘法对试验数据进行统计学分析。结果表明,宾汉模式可作为描述该两性离子聚合物钻井液低温流变特性的优选模式。基于此,计算出该钻井液配方在不同温度下的流变参数,以探究钻井液流变性能随温度降低的变化规律;并就该钻井液的低温流变特征进行了评价。进一步采用傅里叶红外光谱试验和扫描电镜试验就该两性离子聚合物对钻井液低温流变调控机理进行了探讨。  相似文献   

15.
在钻探过程中,当温压条件合适,钻井液易形成天然气水合物,造成管线堵塞、钻井液性能变化。研究2种水基钻井液对绿峡谷气水合物形成过程中的影响。结果表明实验条件下该2种水基钻井液很易形成水合物,受钻井液组分的影响,两种钻井液中天然气水合物形成速率具有明显差异。在相同的温度下,实验压力越高,天然气水合物越易于形成,反应越剧烈。采用定容压力搜索法,测定了在13~18 MPa时此2种水基钻井液与绿峡谷气形成水合物的相平衡数据,显示一种钻井液能够促进水合物的形成,另外一种钻井液对水合物形成有抑制作用。  相似文献   

16.
高温高压条件下,水基钻井液的密度不再是一个常数。而过窄的安全泥浆密度窗口是钻高温高压油气井遇到的最大的问题之一。采用高温高压静密度测定装置和常规钻井液性能测定仪器,研究了自来水和低、中、高三种密度水基钻井液的静态密度随温度和压力的变化规律,并回归了其关系式,建立起了钻井液静态密度随温度和压力而变化的数学模型,并对影响高温高压下水基钻井液静态密度变化的因素进行了分析。得出了温度对水基钻井液的密度影响最大,压力对其影响较小的结论。根据实验数据提出了随着温度的升高,压力对钻井液的密度变化影响变大的观点。  相似文献   

17.
研究低温条件对钻井液流变性的影响,对保证在冻土地区天然气水合物钻探安全顺利的开展有着重要的意义。通过对实验室研制出的无固相聚合物钻井液与低固相聚合物钻井液流变性进行对比研究,分析两种不同类型的钻井液低温流变性的变化规律。采用赫-巴模式中的参数对无固相与低固相聚合物钻井液的流变性能进行分析比较。对无固相聚合物钻井液与低固相聚合物钻井液建立了预测黏度与温度关系的数学模型。实测数据验证表明,数学模型拟合度高,可在现场根据不同类型的钻井液采用不同的模型进行分析研究。最后采用扫描电镜对两种体系钻井液的低温流变性进行了微观机理分析。  相似文献   

18.
由于天然气水合物仅在高压低温条件下稳定存在,为了保持水合物稳定,在钻井过程中宜采用低温钻井液,而在低温条件下钻井液能否对井底岩石表层起到软化作用,对于提高机械钻速具有重要意义。在分析钻井液对井底岩石表层软化作用机制的基础上,较系统地建立低温钻井液软化井底岩石表层定量评价方法,以清水为对比浆液,通过试验将6种水合物地层模拟钻井液(分别含有质量分数为0.1%的表面活性剂和有机盐处理剂)在低温条件下对薄片砂岩试样的软化效果进行对比。结果表明:相比于两种有机盐处理剂,含表面活性剂的4种模拟钻井液在低温条件下对岩样软化效果更好,有利于提高岩石破碎效率和机械钻速;4种含表面活性剂钻井液中,含十二烷基硫酸钠(SDS)钻井液对岩样的软化效果最好。  相似文献   

19.
ZnO nanoparticles and porous particles were produced by an ultrasonic spray pyrolysis method using a zinc nitrate precursor at various temperatures under air atmosphere. The effects of reaction temperature on the size and morphology of ZnO particles were investigated. The samples were characterized by energy dispersive spectroscopy, X-ray diffraction, transmission electron microscopy, and scanning electron microscopy. ZnO particles were obtained in a hexagonal crystal structure and the crystallite shapes changed from spherical to hexagonal by elevating the reaction temperature. The crystallite size grew by increasing the temperature, in spite of reducing the residence time in the heated zone. ZnO nanoparticles were obtained at the lowest reaction temperature and ZnO porous particles, formed by aggregation of ZnO nanoparticles due to effective sintering, were prepared at higher temperatures. The results showed that the properties of ZnO particles can be controlled by changing the reaction temperature in the ultrasonic spray pyrolysis method.  相似文献   

20.
改性超细水泥堵剂的研究与应用   总被引:2,自引:0,他引:2  
水泥作为最早的堵水材料在世界各油田被广泛应用.针对超细水泥颗粒小、水化速度快、时间短,施工过程难以控制的问题,在超细水泥中添加特制的聚合物溶液对其进行复配改性,使得超细水泥的各种性能特别是安全性能大大提高.实验结果表明:在相同温度下,水灰比减小,水泥固化时间缩短;在相同的水灰比下,温度升高,水泥固化时间缩短;水灰比越小,堵剂的强度越高;温度越高,在相同的时间内堵剂的强度越高.该堵剂适应地层温度范围宽(室温~130℃),使用安全,封堵强度高.从2003年开始在大港油田各个区块应用60多井次,施工成功率100%,取得了明显的应用效果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号