首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
根据我国现行《预应力混凝土结构抗震设计规程》(JGJ 140-2004),以设防烈度为8度(0.2 g)地区的多跨多层预应力混凝土框架结构柱端弯矩增大系数为研究对象,对其合理取值问题进行了探讨.在SAP2000与PERFORM-3D软件中,采用局部纤维铰梁单元,对6个PC平面框架建立了弹塑性分析模型,并对其进行了静力弹塑性分析(Pushover分析)与动力弹塑性时程分析.计算结果表明:按照现行规范设计的PC框架,基本上可以满足8度区罕遇地震作用下的抗震要求,但是结构在大震作用下形成的是以底层柱端出铰为主的梁柱铰屈服机制,对结构抗震不利;随着柱端弯矩增大系数的增加,结构的局部构件抗震性能以及屈服机制均有很大程度的改善,当边柱和中柱的柱端弯矩增大系数分别增加到2.0,1.8时,预应力混凝土框架结构能够实现对结构抗震有利的以梁出铰为主的梁柱铰屈服机制,甚至是梁铰屈服机制.因此,建议在进行预应力抗震技术规程的修订时,适当提高框架结构柱端弯矩增大系数的取值.  相似文献   

2.
基于纤维模型的外粘型钢加固混凝土柱静力弹塑性分析   总被引:3,自引:1,他引:2  
基于纤维模型,引入约束混凝土本构关系,提出了对外粘型钢加固混凝土柱进行静力弹塑性分析的方法,并在OpenSees平台上编程实现.在此基础上,对约束混凝土本构参数进行了敏感性研究,探讨了混凝土材料本构模型对截面层次的弯矩曲率关系和构件层次的荷载位移关系的影响.经与2次不同的试验结果比较,计算的荷载位移曲线与试验结果符合良好,表明在外包钢加固柱进行弹塑性分析时,对约束混凝土采用Kent-Scott-Park本构模型可以获得良好的分析结果.本构模型中约束增强系数和应变参数对于分析结果,特别是弹塑性阶段结果的准确性起到非常重要的作用.  相似文献   

3.
根据我国现行《预应力混凝土结构抗震设计规程》(JGJ 140-2004),以设防烈度为8度(0.2g)地区的多跨多层预应力混凝土框架结构柱端弯矩增大系数为研究对象,对其合理取值问题进行了探讨.在SAP2000与PERFORM-3D软件中,采用局部纤维铰梁单元,对6个PC平面框架建立了弹塑性分析模型,并对其进行了静力弹塑性分析(Pushover分析)与动力弹塑性时程分析.计算结果表明:按照现行规范设计的PC框架,基本上可以满足8度区罕遇地震作用下的抗震要求,但是结构在大震作用下形成的是以底层柱端出铰为主的梁柱铰屈服机制,对结构抗震不利;随着柱端弯矩增大系数的增加,结构的局部构件抗震性能以及屈服机制均有很大程度的改善,当边柱和中柱的柱端弯矩增大系数分别增加到2.0,1.8时,预应力混凝土框架结构能够实现对结构抗震有利的以梁出铰为主的梁柱铰屈服机制,甚至是梁铰屈服机制.因此,建议在进行预应力抗震技术规程的修订时,适当提高框架结构柱端弯矩增大系数的取值.  相似文献   

4.
高强混凝土结构的延性抗震设计   总被引:2,自引:1,他引:2  
利用Martinez和Bjerkeli等人建议的高强约束混凝土的应力-应变关系,编写了弯矩-曲率关系的计算程序,并通过试验结果验算了计算模型的正确性,借助该分析模型对欧洲桥梁的抗震规范所规定的约束混凝土的最低含箍率进行评价,结果表明,本文所采用的应力-应变关系曲线及弯矩-曲率的计算方法可以用于高强混凝土柱的曲率延性分析,欧洲桥梁抗震设计规范所规定的最低含箍率同样适用于高强度混凝土结构的抗震设计。  相似文献   

5.
文章介绍了圆钢管轻集料混凝土受弯构件的有限元分析方法,在试验研究的基础上,采用有限元软件ANSYS对试验试件进行模拟计算,并且分析了含钢率、钢材屈服强度和轻集料混凝土强度等参数对构件弯矩-曲率关系曲线的影响。计算分析结果表明,计算所得极限荷载和弯矩-曲率关系曲线与试验结果吻合较好;含钢率是影响构件抗弯性能的主要因素;钢材屈服强度对构件的抗弯刚度影响很小,但对其抗弯承载力影响明显;轻集料混凝土强度对圆钢管轻集料混凝土构件的抗弯承载力与抗弯刚度影响甚小。  相似文献   

6.
钢筋混凝土框架结构地震失效模式优化   总被引:1,自引:0,他引:1  
地震作用下钢筋混凝土框架结构薄弱部位易发生损伤破坏,从而引起结构失效,针对结构的失效模式进行优化有利于提高结构的抗震性能.为此,以结构构件、结构层以及结构整体的损伤准则为约束方程,采用以结构构件损伤值相等为目标的优化设计方法,通过二次开发的钢材和混凝土的弹塑性损伤本构模型,应用纤维单元模型对强震作用下钢筋混凝土框架结构的失效模式进行了优化.以12层钢筋混凝土框架结构Benchmark模型为例,对双向El-Centro地震动作用下结构各构件的抗震性能进行优化,并对优化前后结构的动力响应和损伤发展进行分析,结果表明最优结构损伤集中得到有效的控制,结构各层损伤分布更加均匀,结构整体损伤减小,结构的抗震性能得到明显提高.  相似文献   

7.
以实验研究和圆CFRP-钢管约束混凝土在轴压力作用下的应力-应变关系为基础,应用纤维模型法模拟了16根圆CFRP-钢管混凝土受弯构件的弯矩-曲率关系。计算值与实验值符合良好,且偏于安全,表明纤维模型法用于分析圆CFRP-钢管混凝土受弯构件是可行的。分析了纵向CFRP层数和长径比对圆CFRP-钢管混凝土受弯构件力学性能的影响。总结了典型的圆CFRP-钢管混凝土受弯构件的弯矩-曲率关系曲线的特点。对于含有纵向CFRP的构件,其曲线可以分为三个阶段:弹性阶段、弹塑性阶段和软化阶段;对于不含有纵向CFRP的构件,其曲线可以分为三个阶段:弹性阶段、弹塑性阶段和塑性增强阶段。该方法也可用于圆钢管混凝土受弯构件的弯矩-曲率关系分析。  相似文献   

8.
利用OpenSEES系统,基于Lazan材料阻尼与应力关系的研究理论,采用Hognestad混凝土本构关系模型及Karsan-Jirsa加卸载准则,计算素混凝土构件在轴向重复荷载作用下的滞回曲线包围面积,得到混凝土正应力作用下单位体积损耗能量.分析计算结果表明,素混凝土材料单位体积损耗能量随最大应力幅值的提高而增大,在相同最大应力幅值处混凝土强度越高,单位体积耗能越小.对结果非线性回归建立了素混凝土材料单位体积耗能与最大应力幅值及混凝土强度之间的关系式,在理论上为混凝土材料阻尼的计算提出了新的思路及方法,也为进一步准确分析其结构动力性能、进行安全经济合理的抗震设计打下基础.  相似文献   

9.
目的研究内置CFRP圆管的方钢管高强混凝土柱-工字型钢梁框架结构的工作特点和抗震性能及不同材料配置量对结构抗震性能的影响.方法使用OpenSees软件,对一个8层内置CFRP圆管的方钢管高强混凝土柱-工字型钢梁的框架结构建立标准模型,进行Pushover分析.结果不同参数对组合柱的承载力、刚度、延性均产生影响,并且由于约束作用的存在改变了夹层混凝土和核心混凝土的本构关系,间接影响了组合柱的抗震性能.将Pushover分析中能力谱法得出的性能点反带入能力谱求出其所对应的目标位移为140 mm,满足规范的限值要求.结论设计时应根据需要改变梁柱刚度比的最小值及其性能,达到在合理塑性破坏形式的前提下,使组合柱更多的参与结构抗震,以提高结构的抗震能力.  相似文献   

10.
抗震设计中,在非弹性范围内承受地震荷载时,需要考虑结构的延性。在本文的工作中分析了受弯构件实验结果和研究了计算钢筋混凝土受弯构件延性系数的计算机程序。在弯矩-曲率计算中采用了新的混凝土应力-应变表达式、在位移计算中考虑了塑性区实际长度和曲率分布。  相似文献   

11.
刘博  孔璟常  崔亮 《科学技术与工程》2022,22(12):4902-4911
对结构进行动力和静力分析时,构件单元和模型的准确性将直接影响到分析结果。为在建立填充墙钢筋混凝土(reinforced concrete, RC)框架简化模型时选择合适的单轴材料与简化模型,使用OpenSees基于3种单轴材料与4种填充墙简化模型结合填充墙RC框架试验对模型的准确性与适用性进行了对比分析。根据对比结果建立填充墙RC框架结构模型,采用Pushover方法对结构进行了整体抗震性能系数的分析。结果表明:Hysteretic材料可以准确地模拟滞回曲线的形状及峰值承载力;单撑杆模型对填充墙的峰值承载力、割线刚度、残余变形模拟较准确;五撑杆模型对填充墙的峰值承载力与初始刚度模拟较准确;满布布置的填充墙可增大RC框架结构的整体抗震性能系数,底层不布置填充墙会明显导致结构整体抗震性能系数的降低。因此,仅研究填充墙平面内问题时选用单撑杆模型即可,在设计时要考虑填充墙的布置,避免出现底部薄弱层而影响整个结构的安全。  相似文献   

12.
根据已有楼梯抗震试验结果,给出梯段板抗震性能水平及其量化指标;建立框架结构层间位移角与梯段板抗震性能指标之间的关系,并进行楼梯抗震性能宏观评价;基于梯段板、梯柱、与休息平台直接相连的框架柱等楼梯构件,给出既有RC框架结构板式楼梯抗震性能评估的具体方法和步骤.  相似文献   

13.
刘继鹏 《河南科学》2012,30(6):750-754
钢筋混凝土是由钢筋和混凝土两种具有不同物理力学性质的材料组合而成的复合材料,其本构模型比较复杂.钢筋与混凝土两者之间的粘结滑移关系,虽然历经近百年的试验研究,对钢筋混凝土机理的认识水平日益深刻,但在有限元分析中还不是很完善.通过选用合适的材料本构模型和粘结滑移模型,建立有限元分析模型,从而进行全过程的模拟分析.  相似文献   

14.
基于外包钢加固震损型钢混凝土框架结构在低周往复荷载作用下的破坏性试验,采用材料性能折减的方法考虑震损影响,对外包钢加固损伤的型钢混凝土框架结构进行有限元建模分析,利用改进的双参数地震损伤模型计算其主要构件和整体结构的损伤指数,并利用多项式函数对其构件及整体结构的损伤演化曲线进行拟合,探讨外包钢加固震损型钢混凝土框架结构在低周往复荷载作用下的损伤演化规律。结果表明,通过折减材料性能来模拟预震损的方法是合理的;改进的地震损伤模型能定量计算结构在各个循环阶段的损伤指数;外包钢加固型钢混凝土框架结构的方法能有效降低型钢混凝土框架结构地震损伤程度,与未加固的震损型钢混凝土框架结构相比,外包钢加固震损型钢混凝土框架结构的抗震性能明显增强。  相似文献   

15.
混凝土框架结构已被越来越多地应用于各种建筑中.为达到安全经济的目的,该文在现有框架结构优化理论的基础上,用Fortran90程序设计语言和有限元分析法编写了空间混凝土框架结构优化分析程序3DFOA,不仅提高了优化设计的工作效率,且具有良好的优化效果,节约了建筑材料,同时降低了造价.  相似文献   

16.
装配工艺的要求和连接接缝的引用使装配式混凝土结构的数值模拟分析面临新的挑战,计算效率与模拟精度之间的矛盾变得更加突出。基于通用有限元软件ABAQUS,采用多尺度建模,模拟分析了装配整体式混凝土框架结构的抗震性能。首先,基于装配整体式混凝土梁柱子结构的试验数据,验证了多尺度单元界面连接方法的正确性。然后,对装配整体式混凝土框架结构的多尺度模型进行了静力推覆分析和动力弹塑性时程分析,并与现浇混凝土框架结构的地震响应和损伤情况进行比较。结果表明,多尺度建模能有效提高计算精度并降低计算成本,很好地模拟装配整体式混凝土框架结构的破坏特征和整体结构的抗震性能;与现浇结构相比,装配整体式框架结构在单向静力推覆作用下抗侧刚度更小、延性更好,在7度罕遇地震作用下抗震性能相近,顶层最大位移增大了3.8%;多尺度建模方法可用于装配式混凝土结构分析。  相似文献   

17.
钢筋混凝土梁柱组合体试验结果表明节点内纵筋滑移和节点剪切变形对组合体的抗震性能有明显影响,但框架的非弹性地震反应分析一般忽略了节点非弹性变形的影响.为了模拟节点区非弹性变形的影响,在纤维模型基础上采用在梁端附加零长度截面单元的方法,并通过σ-s本构模型考虑节点内梁纵筋粘结滑移,以及通过σ-sslip-shear本构模型同时考虑节点内纵筋滑移和节点剪切变形.考察了典型平面框架在罕遇地震下的非线性反应,对比分析了节点非弹性变形对框架整体和局部反应的影响.结果表明,考虑节点非弹性变形之后结构的最大顶点位移、最大层间位移角将增大或仅略有变化,梁端、柱端塑性铰数量将减少,梁、柱的转角延性需求总体而言将减小;地震作用下框架节点距离剪切失效尚有一定安全储备.框架地震反应大时忽略节点非弹性变形将导致明显误差,地震反应较小时可采用不考虑节点非弹性变形的常规有限元分析模型.  相似文献   

18.
汶川地震中大量钢筋混凝土(reinforced concrete, RC)框架结构破坏严重,极震区其倒塌率却远超过多层砖混结构。2022年9月以来,四川频发地震,为重新探讨倒塌机理及抗震性能,本文研究通过实地震害及多层RC框架结构破坏形式,结合数值模型并应用MIDAS Gen有限元计算方法,研究了RC框架结构的倒塌机理、地震响应分析。结果表明:框架柱的破坏与屈服是RC框架倒塌的主要因素,模拟增设填充墙,当地震烈度达到10度时,层间位移角大约1/46,降低柱的轴压比,提高柱的破坏延性,增大结构的极限抗侧能力,起到抗震第一道防线的作用,避免整体屈服破坏。  相似文献   

19.
腋撑是设置于梁柱节点区域的短斜撑,用于提高结构抗水平力作用性能。与普通框架支撑相比,腋撑能提高建筑的有效使用空间,提高建筑的使用功能。腋撑可采用钢支撑、混凝土支撑以及耗能支撑等形式。钢管混凝土腋撑相比于钢腋撑,其轴向承载力较高;相比于混凝土腋撑和耗能腋撑,其施工更为方便。以新沂市某中学教学楼为背景工程,分别构建RC框架和RC框架-钢管混凝土腋撑结构模型,计算两种结构的振型、自振周期、能力曲线以及刚度退化速率等动力性能指标,通过对比分析,探讨增加钢管混凝土腋撑后对结构抗震性能的影响。研究表明,增设钢管混凝土腋撑后,结构的水平极限承载力和初始刚度大幅提高,层间位移明显减小,RC框架-钢管混凝土腋撑结构是一种抗震性能较好的新型结构。  相似文献   

20.
为了研究用钢筋混凝土摩擦耗能支撑对既有框架结构加固后的抗震性能,利用ETABS软件模拟既有框架结构加固前和加固后的模型。对比了两个模型的层间位移角、剪重比以及内力变化。通过研究表明:增设耗能支撑的加固措施,不仅能有效地改善既有框架结构的抗侧刚度,而且在罕遇地震作用下还能提供很好的耗能减震性能,从而使既有框架结构加固后具有足够的抗震安全储备实现其抗震设防目标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号