首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
F-box proteins are members of a large family that regulates the cell cycle, the immune response, signalling cascades and developmental programmes by targeting proteins, such as cyclins, cyclin-dependent kinase inhibitors, IkappaBalpha and beta-catenin, for ubiquitination (reviewed in refs 1-3). F-box proteins are the substrate-recognition components of SCF (Skp1-Cullin-F-box protein) ubiquitin-protein ligases. They bind the SCF constant catalytic core by means of the F-box motif interacting with Skp1, and they bind substrates through their variable protein-protein interaction domains. The large number of F-box proteins is thought to allow ubiquitination of numerous, diverse substrates. Most organisms have several Skp1 family members, but the function of these Skp1 homologues and the rules of recognition between different F-box and Skp1 proteins remain unknown. Here we describe the crystal structure of the human F-box protein Skp2 bound to Skp1. Skp1 recruits the F-box protein through a bipartite interface involving both the F-box and the substrate-recognition domain. The structure raises the possibility that different Skp1 family members evolved to function with different subsets of F-box proteins, and suggests that the F-box protein may not only recruit substrate, but may also position it optimally for the ubiquitination reaction.  相似文献   

2.
Skp2 and its cofactor Cks1 are the substrate-targeting subunits of the SCF(Skp2-Cks1) (Skp1/Cul1/F-box protein) ubiquitin ligase complex that regulates entry into S phase by inducing the degradation of the cyclin-dependent kinase inhibitors p21 and p27 (ref. 1). Skp2 is an oncoprotein that often shows increased expression in human cancers; however, the mechanism that regulates its cellular abundance is not well understood. Here we show that both Skp2 and Cks1 proteins are unstable in G1 and that their degradation is mediated by the ubiquitin ligase APC/C(Cdh1) (anaphase-promoting complex/cyclosome and its activator Cdh1). Silencing of Cdh1 by RNA interference in G1 cells stabilizes Skp2 and Cks1, with a consequent increase in p21 and p27 proteolysis. Depletion of Cdh1 also increases the percentage of cells in S phase, whereas concomitant downregulation of Skp2 reverses this effect, showing that Skp2 is an essential target of APC/C(Cdh1). Expression of a stable Skp2 mutant that cannot bind APC/C(Cdh1) induces premature entry into S phase. Thus, the induction of Skp2 and Cks1 degradation in G1 represents a principal mechanism by which APC/C(Cdh1) prevents the unscheduled degradation of SCF(Skp2-Cks1) substrates and maintains the G1 state.  相似文献   

3.
Liao EH  Hung W  Abrams B  Zhen M 《Nature》2004,430(6997):345-350
During synapse formation, specialized subcellular structures develop at synaptic junctions in a tightly regulated fashion. Cross-signalling initiated by ephrins, Wnts and transforming growth factor-beta family members between presynaptic and postsynaptic termini are proposed to govern synapse formation. It is not well understood how multiple signals are integrated and regulated by developing synaptic termini to control synaptic differentiation. Here we report the identification of FSN-1, a novel F-box protein that is required in presynaptic neurons for the restriction and/or maturation of synapses in Caenorhabditis elegans. Many F-box proteins are target recognition subunits of SCF (Skp, Cullin, F-box) ubiquitin-ligase complexes. fsn-1 functions in the same pathway as rpm-1, a gene encoding a large protein with RING finger domains. FSN-1 physically associates with RPM-1 and the C. elegans homologues of SKP1 and Cullin to form a new type of SCF complex at presynaptic periactive zones. We provide evidence that T10H9.2, which encodes the C. elegans receptor tyrosine kinase ALK (anaplastic lymphoma kinase), may be a target or a downstream effector through which FSN-1 stabilizes synapse formation. This neuron-specific, SCF-like complex therefore provides a localized signal to attenuate presynaptic differentiation.  相似文献   

4.
Mechanism of auxin perception by the TIR1 ubiquitin ligase   总被引:5,自引:0,他引:5  
  相似文献   

5.
Angers S  Li T  Yi X  MacCoss MJ  Moon RT  Zheng N 《Nature》2006,443(7111):590-593
  相似文献   

6.
Wei W  Ayad NG  Wan Y  Zhang GJ  Kirschner MW  Kaelin WG 《Nature》2004,428(6979):194-198
Cell-cycle transitions are driven by waves of ubiquitin-dependent degradation of key cell-cycle regulators. SCF (Skp1/Cullin/F-box protein) complexes and anaphase-promoting complexes (APC) represent two major classes of ubiquitin ligases whose activities are thought to regulate primarily the G1/S and metaphase/anaphase cell-cycle transitions, respectively. The major target of the Skp1/Cul1/Skp2 (SCF(SKP2)) complex is thought to be the Cdk inhibitor p27 during S phase, whereas the principal targets for the APC are thought to be involved in chromatid separation (securin) and exit from mitosis (cyclin B). Although the role of the APC in mitosis is relatively clear, there is mounting evidence that APCs containing Cdh1 (APC(CDH1)) also have a function in the G1 phase of the cell cycle. Here, we show that the F-box protein Skp2 is polyubiquitinated, and hence earmarked for destruction, by APC(CDH1). As a result, accumulation of SCF(SKP2) requires prior inactivation of APC(CDH1). These findings provide an insight into the orchestration of SCF and APC activities during cell-cycle progression, and into the involvement of the APC in G1.  相似文献   

7.
8.
9.
10.
为了阐述AtARRE与ABA信号通路关键转录因子ABI5的作用,本研究采用原生质体瞬间表达系统探究了AtARRE蛋白的亚细胞定位,证明AtARRE蛋白定位于细胞核.随后,采用酵母双杂交和GST-Pull down技术分析了AtARRE与ABI5在体外的相互作用,证明AtARRE与ABI5在体外存在相互作用.最后,本研究采用双分子荧光互补实验进一步分析AtARRE与ABI5在体内的相互作用,结果表明共表达AtARRE与ABI5在植物体内存在相互作用.这些结果共同表明AtARRE可能参与了ABI5介导的植物对逆境的响应.  相似文献   

11.
12.
Ubiquitin modification is mediated by a large family of specificity determining ubiquitin E3 ligases. To facilitate ubiquitin transfer, RING E3 ligases bind both substrate and a ubiquitin E2 conjugating enzyme linked to ubiquitin via a thioester bond, but the mechanism of transfer has remained elusive. Here we report the crystal structure of the dimeric RING domain of rat RNF4 in complex with E2 (UbcH5A) linked by an isopeptide bond to ubiquitin. While the E2 contacts a single protomer of the RING, ubiquitin is folded back onto the E2 by contacts from both RING protomers. The carboxy-terminal tail of ubiquitin is locked into an active site groove on the E2 by an intricate network of interactions, resulting in changes at the E2 active site. This arrangement is primed for catalysis as it can deprotonate the incoming substrate lysine residue and stabilize the consequent tetrahedral transition-state intermediate.  相似文献   

13.
The biogenic amine histamine is an important pharmacological mediator involved in pathophysiological processes such as allergies and inflammations. Histamine H(1) receptor (H(1)R) antagonists are very effective drugs alleviating the symptoms of allergic reactions. Here we show the crystal structure of the H(1)R complex with doxepin, a first-generation H(1)R antagonist. Doxepin sits deep in the ligand-binding pocket and directly interacts with Trp?428(6.48), a highly conserved key residue in G-protein-coupled-receptor activation. This well-conserved pocket with mostly hydrophobic nature contributes to the low selectivity of the first-generation compounds. The pocket is associated with an anion-binding region occupied by a phosphate ion. Docking of various second-generation H(1)R antagonists reveals that the unique carboxyl group present in this class of compounds interacts with Lys?191(5.39) and/or Lys?179(ECL2), both of which form part of the anion-binding region. This region is not conserved in other aminergic receptors, demonstrating how minor differences in receptors lead to pronounced selectivity differences with small molecules. Our study sheds light on the molecular basis of H(1)R antagonist specificity against H(1)R.  相似文献   

14.
Epac proteins are activated by binding of the second messenger cAMP and then act as guanine nucleotide exchange factors for Rap proteins. The Epac proteins are involved in the regulation of cell adhesion and insulin secretion. Here we have determined the structure of Epac2 in complex with a cAMP analogue (Sp-cAMPS) and RAP1B by X-ray crystallography and single particle electron microscopy. The structure represents the cAMP activated state of the Epac2 protein with the RAP1B protein trapped in the course of the exchange reaction. Comparison with the inactive conformation reveals that cAMP binding causes conformational changes that allow the cyclic nucleotide binding domain to swing from a position blocking the Rap binding site towards a docking site at the Ras exchange motif domain.  相似文献   

15.
Termination of protein synthesis occurs when the messenger RNA presents a stop codon in the ribosomal aminoacyl (A) site. Class I release factor proteins (RF1 or RF2) are believed to recognize stop codons via tripeptide motifs, leading to release of the completed polypeptide chain from its covalent attachment to transfer RNA in the ribosomal peptidyl (P) site. Class I RFs possess a conserved GGQ amino-acid motif that is thought to be involved directly in protein-transfer-RNA bond hydrolysis. Crystal structures of bacterial and eukaryotic class I RFs have been determined, but the mechanism of stop codon recognition and peptidyl-tRNA hydrolysis remains unclear. Here we present the structure of the Escherichia coli ribosome in a post-termination complex with RF2, obtained by single-particle cryo-electron microscopy (cryo-EM). Fitting the known 70S and RF2 structures into the electron density map reveals that RF2 adopts a different conformation on the ribosome when compared with the crystal structure of the isolated protein. The amino-terminal helical domain of RF2 contacts the factor-binding site of the ribosome, the 'SPF' loop of the protein is situated close to the mRNA, and the GGQ-containing domain of RF2 interacts with the peptidyl-transferase centre (PTC). By connecting the ribosomal decoding centre with the PTC, RF2 functionally mimics a tRNA molecule in the A site. Translational termination in eukaryotes is likely to be based on a similar mechanism.  相似文献   

16.
Y M Chook  G Blobel 《Nature》1999,399(6733):230-237
Transport factors in the karyopherin-beta (also called importin-beta) family mediate the movement of macromolecules in nuclear-cytoplasmic transport pathways. Karyopherin-beta2 (transportin) binds a cognate import substrate and targets it to the nuclear pore complex. In the nucleus, Ran x GTP binds karyopherin-beta2 and dissociates the substrate. Here we present the 3.0 A structure of the karyopherin-beta2-Ran x GppNHp complex where GppNHp is a non-hydrolysable GTP analogue. Karyopherin-beta2 contains eighteen HEAT repeats arranged into two continuous orthogonal arches. Ran is clamped in the amino-terminal arch and substrate-binding activity is mapped to the carboxy-terminal arch. A large loop in HEAT repeat 7 spans both arches. Interactions of the loop with Ran and the C-terminal arch implicate it in GTPase-mediated dissociation of the import-substrate. Ran x GppNHp in the complex shows extensive structural rearrangement, compared to Ran GDP, in regions contacting karyopherin-beta2. This provides a structural basis for the specificity of the karyopherin-beta family for the GTP-bound state of Ran, as well as a rationale for interactions of the karyopherin-Ran complex with the regulatory proteins ranGAP, ranGEF and ranBP1.  相似文献   

17.
The activation of ubiquitin and related protein modifiers is catalysed by members of the E1 enzyme family that use ATP for the covalent self-attachment of the modifiers to a conserved cysteine. The Escherichia coli proteins MoeB and MoaD are involved in molybdenum cofactor (Moco) biosynthesis, an evolutionarily conserved pathway. The MoeB- and E1-catalysed reactions are mechanistically similar, and despite a lack of sequence similarity, MoaD and ubiquitin display the same fold including a conserved carboxy-terminal Gly-Gly motif. Similar to the E1 enzymes, MoeB activates the C terminus of MoaD to form an acyl-adenylate. Subsequently, a sulphurtransferase converts the MoaD acyl-adenylate to a thiocarboxylate that acts as the sulphur donor during Moco biosynthesis. These findings suggest that ubiquitin and E1 are derived from two ancestral genes closely related to moaD and moeB. Here we present the crystal structures of the MoeB-MoaD complex in its apo, ATP-bound, and MoaD-adenylate forms, and highlight the functional similarities between the MoeB- and E1-substrate complexes. These structures provide a molecular framework for understanding the activation of ubiquitin, Rub, SUMO and the sulphur incorporation step during Moco and thiamine biosynthesis.  相似文献   

18.
Jin J  Li X  Gygi SP  Harper JW 《Nature》2007,447(7148):1135-1138
Modification of proteins with ubiquitin or ubiquitin-like proteins (UBLs) by means of an E1-E2-E3 cascade controls many signalling networks. Ubiquitin conjugation involves adenylation and thioesterification of the carboxy-terminal carboxylate of ubiquitin by the E1-activating enzyme Ube1 (Uba1 in yeast), followed by ubiquitin transfer to an E2-conjugating enzyme through a transthiolation reaction. Charged E2s function with E3s to ubiquitinate substrates. It is currently thought that Ube1/Uba1 is the sole E1 for charging of E2s with ubiquitin in animals and fungi. Here we identify a divergent E1 in vertebrates and sea urchin, Uba6, which specifically activates ubiquitin but not other UBLs in vitro and in vivo. Human Uba6 and Ube1 have distinct preferences for E2 charging in vitro, and their specificity depends in part on their C-terminal ubiquitin-fold domains, which recruit E2s. In tissue culture cells, Uba6 is required for charging a previously uncharacterized Uba6-specific E2 (Use1), whereas Ube1 is required for charging the cell-cycle E2s Cdc34A and Cdc34B. Our data reveal unexpected complexity in the pathways that control the conjugation of ubiquitin, in which dual E1s orchestrate the charging of distinct cohorts of E2s.  相似文献   

19.
Chao WC  Kulkarni K  Zhang Z  Kong EH  Barford D 《Nature》2012,484(7393):208-213
In mitosis, the spindle assembly checkpoint (SAC) ensures genome stability by delaying chromosome segregation until all sister chromatids have achieved bipolar attachment to the mitotic spindle. The SAC is imposed by the mitotic checkpoint complex (MCC), whose assembly is catalysed by unattached chromosomes and which binds and inhibits the anaphase-promoting complex/cyclosome (APC/C), the E3 ubiquitin ligase that initiates chromosome segregation. Here, using the crystal structure of Schizosaccharomyces pombe MCC (a complex of mitotic spindle assembly checkpoint proteins Mad2, Mad3 and APC/C co-activator protein Cdc20), we reveal the molecular basis of MCC-mediated APC/C inhibition and the regulation of MCC assembly. The MCC inhibits the APC/C by obstructing degron recognition sites on Cdc20 (the substrate recruitment subunit of the APC/C) and displacing Cdc20 to disrupt formation of a bipartite D-box receptor with the APC/C subunit Apc10. Mad2, in the closed conformation (C-Mad2), stabilizes the complex by optimally positioning the Mad3 KEN-box degron to bind Cdc20. Mad3 and p31(comet) (also known as MAD2L1-binding protein) compete for the same C-Mad2 interface, which explains how p31(comet) disrupts MCC assembly to antagonize the SAC. This study shows how APC/C inhibition is coupled to degron recognition by co-activators.  相似文献   

20.
通过体外Tris-buffer模拟生理溶液浸泡实验和动物体内的种植实验,对K_2O-MgO-SiO_2-B_2O_3-F系统玻璃的力学疲劳特性和生物学特性进行了研究,结果表明该玻璃不仅具有良好的抗疲劳特性,而且具有良好的生物相容性和生物活性,能与骨组织产生化学键,形成骨性结合,是一种很有应用前景的体内种植材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号