首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
进行热力发电厂低压加热系统凝结水加热模拟实验,对结构相同、面积比m不同的引射混合式低压加热器进行了引射性能与加热性能实验,并着重进行了人口水压在0.17~0.22 MPa范围内有实用意义的加热实验,当m=10.56和4.69时,实现加热器出口水温高于106℃,优于目前低压加热系统的加热性能;入口水压在0.05~0.6 MPa期间的引射实验结果表明,在低压加热系统中采用引射混合式低压加热器是安全、可行的.  相似文献   

2.
为解决目前火力发电厂中低压加热器存在的问题,设计了一种能够用于火电厂的两级引射混合式低压加热器,并用实验方法研究了该加热器的加热性能,分析了工作流体压力、引射流体压力和进水温度对其引射系数、出口温升以及加热效率的影响,并对单级引射和两级引射两种结构形式的加热能力进行了对比.结果表明,在定蒸汽压力的条件下,工作流体压力越高,引射系数越小,出口水温降低,加热效率升高;当进水温度较低时,引射系数较大,加热效率较高;并且两级引射的加热效果明显优于单级引射,平均温升提高20%以上,加热效率高达99%,其加热性能优于传统的间壁式低压加热器,可望在火力发电厂混合式低压加热器中应用.  相似文献   

3.
采用实验方法研究了由水喷嘴引射压力为0.18~0.22 MPa的水蒸汽时,所形成的汽液两相流的混合加热特性.实验表明在该进汽压力下,引射混合式低压加热器可稳定、可靠地运行,且温升效果明显,能满足电力、供暖、轻工等许多行业蒸汽加热的要求.特别是在单级引射加热不能满足要求的条件下,可以采用双级引射加热,双级在加热能力上比单极提高了20%.  相似文献   

4.
火电机组低压回热系统中的面式加热器普遍存在较大损。应用等效焓降方法,深入分析采用引射式加热器替代面式低压加热器下机组热经济性的变化,并得到各个变化因素的数学计算式。在此基础上,对N600-165/535/535型机组低压回热系统进行实例计算,并与常规热平衡法计算进行了比较,结果表明:引射式加热器替代面式低压加热器,可以有效减小损,替代全部四级面式低压加热器,可使机组经济性提升最大,达0.263%;文中分析推导得出的计算表达式可用于机组热经济性分析计算。  相似文献   

5.
对焦油裂解低压引射式燃烧器进行了研究,利用FLUENT进行数值模拟,研究喷嘴直径d、燃气流量v、喷嘴距壁面距离L这三个参数对焦油裂解的影响.通过采用正交试验比较不同参数下的焦油裂解面积,得到最优参数组合并采用实验验证数值模拟结果.数值模拟与实验结果表明:喷嘴直径d对焦油裂解的影响最大,喷嘴到壁面距离和燃气流量为次要影响;且当喷嘴直径d=4 mm,喷嘴距壁面距离L=18 mm,燃气流量v=0.10 m3/h时,焦油裂解效果最好.  相似文献   

6.
为研究多喷嘴射水式喷射器的加热性能,提出了分析喷射器加热系数的计算模型,对喷射器加热性能的影响因素进行了分析,并根据理论分析和实验数据得出了不同运行参数对其加热性能的影响规律。研究结果表明,多喷嘴射水式喷射器具有很好的加热性能,喷射器的加热系数随入口水温的升高而减小,随蒸汽压力和引射系数的升高而增大,并且计算和实验得到的各运行参数对喷射器加热性能的影响规律是基本一致的。  相似文献   

7.
通过引射混合器主次流不同压比下混合管内流场的模拟计算,确定了该几何构形下发生壅塞时的主次流压比.对高压比下次流壅塞现象的研究表明,壅塞以后继续增大压比,当主流出口静压远大于混合管静压时,混合管内气流只经历一次膨胀和再压缩的过程.同时激波位置固定,不再随压比的继续增大发生变化.基于准一维控制体模型、Fabri壅塞假设模型和连续方程,提出了能有效预测引射器最高性能的饱和超音速模型,推出了此模型下引射系数与总压比和面积比之间的关系.由此得到直接反映引射器性能的特性曲线和修正曲线.最后把解析结果与数值计算的结果进行对比,验证了该模型的有效性.  相似文献   

8.
建立了大尺度引射进气风室试验装置,以精确测量排气引射-混合器的引射流量,采用辅助风机补风以调整并逼近实际引射进口压力,从而提高了引射流量的测量精度,采用3种直径的混合管对轴对称排气引射-混合器的引射流量特性进行对比研究,并结合射流理论对其流动状态加以分析.结果表明:在主流喷管直径一定而混合管直径(D2)不同的条件下,混合管内的流动状态有所不同;当D2=250 mm时,混合管内的流动为过度发展状态,随着主喷管与混合管间距离(a)增大,射流半厚度经扩展后过早附着在混合管壁,其引射系数和引射流量随a值增加而增大,当增至最大值后逐渐减小,随着主流流量的增加,引射流量增大而引射系数变化不大;当D2=300 mm时,混合管内的流动为充分发展状态,随着a值增大,射流半厚度经扩展后在a=300 mm时恰好在混合管出口处附着于混合管壁,其引射系数和引射流量随a值的增幅逐渐变缓;当D2=350 mm时,混合管内的流动为欠发展状态,随着a值增大,射流半厚度经扩展后在混合管出口处仍未附着于混合管壁,引射系数和引射流量随a值增加而增大.  相似文献   

9.
不同混合室构型RBCC引射模态性能分析   总被引:1,自引:0,他引:1  
利用数值模拟方法研究了不同混合室构型对RBCC引射模态性能的影响。分析了不同混合室构型的流场结构、引射性能和混合性能。结果表明在相同的工况下,扩张构型具有较大的引射系数,但是抗背压性能较差;收缩构型引射系数较小,但是抗背压性能最好。等截面构型性能居中。  相似文献   

10.
偏心距引射喷管气动性能研究   总被引:2,自引:0,他引:2  
刘毅 《科学技术与工程》2011,11(14):3241-3247
基于流固热耦合理论,采用标准k-ε湍流模型,通过对Navier-Stokes方程和三维热传导方程联合进行求解。对偏心距引射喷管与传统引射喷管进行了数值模拟,得到了较为精确的流场特性,为后期偏心距引射喷管的红外特性计算提供必要的依据。在数值计算中对于固体域、流体域均采用结构化网格,并在两者边界面上采用耦合方法。对偏心距引射喷管的抽吸特性、推力特性以及最佳偏心距等喷管性能分别进行了深入研究,得出了偏心距引射喷管较传统引射喷管具有泵抽能力强的结论。得到了抽吸能力最强且推力损失较小的最佳偏心距引射喷管,其工程应用前景广泛。  相似文献   

11.
冲击地压是采矿业中突发性、瞬息难以预见的灾害,它的发生常常会造成巨大的经济损失和人员伤亡。因此,研究便捷、可靠的防治方法,成为防冲减灾工作中的重要课题之一。传统防治方法中的大孔径机械钻孔卸压法,存在卡钻、长距离大孔径钻孔钻不动、排渣困难等难题。本文作者采用高压旋转水射流钻孔法,从地面实验中克服了上述问题,并研制了相关设备。通过多次试验数据表明,该方法是可行的,并为长距离、大孔径钻孔卸压“防冲”研究提出了一个新的可行的科学方法。  相似文献   

12.
蓄热式钢包烘烤装置的热工特性   总被引:1,自引:0,他引:1  
为研究蓄热式钢包烘烤装置的热工特性,对高温空气燃烧技术的加热效果进行了理论分析,并针对钢厂同时使用的新、旧钢包烘烤系统进行对比实验研究.研究结果表明:高温空气燃烧可以提高火焰温度,增大火焰体积,增强系统加热能力,提高燃料利用系数;使用蓄热式烤包系统对钢包烘烤器进行改造,经改造的系统节能近40%,钢包烘烤升温速度由6 K/min升高到25 K/min左右,钢包内温度均匀性提高,各测点的温度相差不超过30 K,转炉和连铸生产条件大大改善.  相似文献   

13.
文章论述家用交流电接器架热器加板的传热模型,得出其温度振荡解,供热设计使用。  相似文献   

14.
通过对国家标准GB/T23137—2008与GB/T 21362—2008中循环加热式及静态加热式热泵热水器制热量的测试方法的分析,发现制热量的测量存在误差,影响机组性能的判定.现提出另一种测试方法——排水法.待热泵热水器将水箱内的水加热至设定温度55℃后,从排水口将热水排出,同时进水口进入15℃的水,至排水温度与进水温度相差小于等于0.5℃,实验结束.绘制排水曲线图,计算出热泵热水器的制热量.结果表明,排水法较国标法测得的循环加热式的制热量平均增加了10.2%,性能系数COP增加了10.2%;静态加热式的制热量增加了12%,COP增加了12%.研究表明,排水法在热泵热水器性能测试中具有较高的精度.  相似文献   

15.
介绍了研制电热膜快速热水器的方法,给出了控制电路.该热水器体积小,热效率92.5%,自动恒温,使用安全方便  相似文献   

16.
当前火电厂低压加热器疏水系统通常采用疏水逐级方式,这是因为其实现过程较为简单,然而疏水逐级回流需排挤低压抽汽,会导致不可逆损失的产生。因此,提出一种新的基于等效热降法的火电厂低压加热器疏水系统改进设计方法,介绍了当前火电厂低压加热器疏水系统选择的逐级回流运行形式,对其弊端进行分析。介绍了等效热降法,在此基础上,设计和分析了选用疏水泵和疏水冷却器的火电厂低压加热器疏水改进系统。将某火电厂作为研究对象,给出原始数据和等效热降计算结果,依据该结果,通过计算加热器的热经济性确定最终的改进方案。将改进后系统和改进前系统电能损耗进行比较,结果表明,改进后系统节能性高,成本低。  相似文献   

17.
根据文丘里管加速降压原理,设计制作了套管形式的冷热风混合加热器,使风机和燃烧器在正常工作条件下输出设计所需温度参数的热态烟气.该装置解决了烟气脱硫净化等实验研究中热态烟气模拟的难题,具有结构紧凑、热效高、易于调节等特点,可模拟任意一种烟气工况所需的风速和温度参数.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号