首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
设u″(x)+p(x)u′(x)+q(x)u(x)=f(x) a≤x≤bu(a)=u_a u(b)=u_b (1)其中p(x),q(x)∈c~3[a,b],f(x)∈c~3[a,b],q(x)≤q_0<0或q(x)≥q_1>0,由常微分方程基本理论知存在唯一的u(x)∈c~5[a,b]满足(1).又设△是[a,b]的一个等距分划  相似文献   

2.
本文将证明牛顿—莱布尼兹公式对于 schwarz 导数亦成立。设函数 f(x)定义在[a,b]上,若对于 x∈(a、b)(?)(f(x+h)-f(x-h))/(2h)存在,则该极限值为 f(x)在点 x 的 schwarz 导数。记作 f~s(x)引理1 设 f(x)是[a,b]上的连续函数,f~s(x)在(a、b)上存在,若 f(b)>(<)f(a),则存在点,c∈(a,b),使得:f~s(c)≥0(≤0)引理2 设 f(x)在[a,b]上连续,f~s(x)在(a,b)上存在,f(a)=f(b)=0,则存在点 x_1,a相似文献   

3.
利用锥拉伸与压缩不动点定理,讨论n阶奇异边值问题{x(n)(t)+λα(t)f(t,x(t))=0,t∈(a,b),x(a)=x″(a)=…=x(n-1)(a)=0,x′(b)=0非减正解的存在性,其中λ>0是常数,α∈C((a,b),R+), f∈C([a,b]×(0,∞),R+),R+是正实数集,α(t)可以在t=a,b 处奇异,f(t,s)可以在s=0处奇异.  相似文献   

4.
1.假如f(x)∈L[0,2π],且在[0,2π]的子区间[a,b]上是连续的,那末我们写着f(x)∈L[0,2π]·C[a,b], ω_2(f,δ;a,b)= sup |f(x+h)+f(x-h)-2f(x)|.关于这类函数的富里埃级数f(x)~a_0/2+sum form n=1 to ∞(1/n)(a_n COS nx+b_n sin nx),Flett,Sunouchi等作者讨论了蔡查罗局部逼近问题。本文的目的是在详尽地讨论这个局部逼近问题,指出局部性与整体性的差别,并且解决了局部饱和问题。我们建立两个定理。定理1.设f(x)∈L[0,2π],ω_2(f, δ;a,b)=O(δ~β),f(x)的富里埃系数a_n,b_n=O(n~(a-β)).则(i)当0<β<1时,在[α+2ε,b-2ε]中均匀地成立着σ_n~α(f;x)-f(x)=O(n~(-β));(ii)当β=1时,f′(x)在[a,b]中是有界的话,在[a+2ε,b-2ε」中均匀地成立着  相似文献   

5.
证明了若f:[a,b]→[a,b]为单调增加的连续函数,λ∈(0,1),定义Fλ:[a,b]→[a,b],Fλx=(1-λ)x+λf(x),x1∈[a,b],xn+1=Fλxn=Fλnx1,n≥1,则{xn}单调地收敛于f的1个不动点.  相似文献   

6.
在[1]中§4 给出了函数f(x)=αx~2 βx γ(α≠0)的一种有趣的性质:f(x)在任何一个区间[a,b]上的平行等积割线宽度与其区间长度b-a之比为常数.关于这点,我们可以把它推广到n维欧氏空间中去,即设n维欧氏空间中的旅转抛物面为  相似文献   

7.
一、引理引理1 若函数f(x)在闭区间[a,b]连续,则f(x)在[a,b]上一致连续.引理2 若函数f(x)在[a,b]及[b,c]都一致连续,则f(x)在[a,c]上一致连续.注改[b,c]为[b, ∞)时,结论也成立.引理3 设函数f(x)在开区间(a,b)连续,则f(x)在(a,b)一致连续的充分必要条件是f(a 0)、f(b-0)都存在且为有限值.证明见[1]之正文及相应习题.二、主要结论定理1 若函数f(x)在区间I(I可开、半开、有限或无限,下同)可导,且f’(x)在I有界,则函数f(x)在I一致连续.  相似文献   

8.
设 f:[0,1]×R2→R连续,λ>0 为常数,讨论四阶三点常微分方程:x(4)(t)-λxm(t)=f(t,x(t),x″(t))x(0)=x(1)=0,x″(0)=0,x″(1)-ax″(η)=0 边值问题的解的存在性,利用上下解方法给出了解的存在性结果.  相似文献   

9.
何波 《广西科学》2005,12(1):8-9,13
设n>4,fb(x)=xn-bx-a∈Z[x],其中a,b≠0,n∈N,a,b∈Z.讨论b=±1时fb(x)的二次不可约因式.证明x6-x-a在Z[x]中没有二次不可约因式;若f-1(x)在Z[x]中有二次不可约因式,除了n≡2(mod 3),a=-1,g(x)=x2+x+1情况外,必有n=5,a=±6或n=13,a=±90,且g(x)=x2±x+2.  相似文献   

10.
设k是特征为零的域,k[x]为k上的多项式环,给出了k[x]上带权单项式导子的概念,然后通过对权是否为零进行分类讨论,证明了D是权为零的非零单项式导子当且仅当存在b∈k\{0},s∈N,使得对任意n∈N都有d(x~n)=nbx~(s+n-1);D是权为λ≠0的非零单项式导子当且仅当存在a∈k\{0},使得D(x~n)=0,n={0λ~(-1)((λa+1)~n-1)x~n,n≥1。  相似文献   

11.
研究如下的Caputo分数阶微分积分方程初值问题:{(cDαa+g)(x)=f(x,cDβa+g(x))∫+xaK(x,t,cDβa+g(t))dt,g(k)(a)=η(k),n-1<β<α相似文献   

12.
本文考虑了如下的p-Kirchhoff型方程[a+λ(∫RN(|"u|p+b|u|p)dx)p-1](-Δpu+b|u|p-2 u)=f(u),x∈RN,u∈W1,p(RN),u0,x∈RN,正解的存在性问题,其中λ0为参数,a,b为正常数,f为连续函数.利用变分方法及截断函数技巧,本文在缺少通常紧性的条件下证明了方程正解的存在性.  相似文献   

13.
本文考虑了如下的p-Kirchhoff型方程[a+λ(∫RN(|"u|p+b|u|p)dx)p-1](-Δpu+b|u|p-2 u)=f(u),x∈RN,u∈W1,p(RN),u>0,x∈RN,正解的存在性问题,其中λ>0为参数,a,b为正常数,f为连续函数.利用变分方法及截断函数技巧,本文在缺少通常紧性的条件下证明了方程正解的存在性.  相似文献   

14.
利用函数f(x)在积分区间[a,b]端点的函数值及各阶导数值,对函数f(x)在[a,b]上的定积分进行估计,进而得到若干积分不等式.主要结果如下:若函数f(x)是[a,b]上n+1次可微函数,且|f(n+1)(x)|≤M(M>0),则|∫baf(x)dx-x∑k=0(b-a)k+1/2k+1(k+1)![f(k)(a)+(-1)kf(b)]|≤1/2n+1(n+2)!M(b-a)n+2  相似文献   

15.
设f:[0,1]×R2→R满足Caratheodory条件,a,b∈L1[0,1],a(·)≥0,b(t)≥0满足0≤∫10a(t)dt<1,0≤∫10b(t)dt<1,运用Leray-Schauder原理考虑了边值问题x″(t)=f(t,x(t),x′(t)) e(t),t∈[0,1],x′(0)=∫10b(t)x′(t)dt,x(1)=∫10a(t)x(t)dt解的存在性.  相似文献   

16.
本文在Riemann积分第二中值定理中,加上一个非常一般化的条件后,得出了一个较强的结果:设函数f在区间[a,b]上非负、不增,且f(a+0)-f(b-0)>0,函数g在[a,b]上Riemann可积,则存在一点ξ∈(a,b),使得integral from n=a to b f(x)g(x)dx=f(a)integral from n=a to ξ g(x)dx。  相似文献   

17.
本文用反证法证明Cauchy微分中值定理。Rolle、Lagrange定理是其直接推论。定理设f,g在[a,b]上连续,在(a,b)内可微,则存在c∈(a,b),使得 f′(c)[φ(b)-φ(a)]=φ′(c)[f(b)-f(a)]。证明设对任意x∈(a,b) f′(x)[φ(b)-φ(a)]-φ′(x)[f(b)-f(a)]≠0,则 d/(dx){f(x)[φ(b)-φ(a)]-φ(x)[f(b)-f(a)]}≠0,记 F(x)=f(x)[φ(b)-φ(a)]-φ(x)[f(b)-f(a)],则F在[a,b]上连续,在(a,b)内可微且F′≠0。故由Darboux知,对所有x∈(a,b)F′>0或  相似文献   

18.
在贝叶斯决策理论中,属于指数族中可重整参数化子族ε_0={f(x|λ)=λ~xe~(u(λ) v(x))}的分布参数λ在单子样贝叶斯解的具体形式在[1]中已有介绍,本文在n维子样下继续讨论这一问题。 定 理 设n维子样z=(z_1,…,Z_n)服从指数族分布的子族ε_0={f(x|λ)=λ~xe~(u(λ) v(x))},λ的先验分布为G(λ),则参数λ在L(λ,δ)=(δ-λ)~2下的贝叶斯解为  相似文献   

19.
研究测度链T上边值问题[q(t)xΔ(t)]Δ+λf(t,xσ(t))=0,t∈[a,σ(b)]∩T,αx(a)-βxΔ(a)=0,γx(σ(b))+δxΔ(σ(b))=0,其中f:[a,σ(b)]×[0,∞)→[0,∞)是连续的,对f赋予一定的条件,通过应用锥上的不动点定理,得到在λ某个区间上边值问题正解的存在性定理。文中把原有的方程二阶部分从xΔΔ(t)推广到[q(t)xΔ(t)]Δ,这里要求q(t)在[a,σ(b)]上有界,恒正。  相似文献   

20.
在不定积分中,其中之一的积分方法:设y=f(x),x=φ(t)及f′(t)都是连续的,x=φ(t)的反函数t=φ~(-a)(x)存在且可导,并且∫f[φ(t)]·φ′(t)dt=F(t)+C,则∫f(x)dx=F[φ~(-a)(x)]+C。在定积分中的换元法则是:对于定积分integral from n=a to b(f(x)dx),其中f(x)在区间[a,b]上连续,如果函数x=0φ(t)满足下列条件(1)φ(t)在区间[α,β]上有定义′是单值的′单调的,且有连续导数φ′(t)。(2)当t在区间[α,β]上变化时,x=φ(t)的值在区间[a,b]上变化,在这些条件下,则有公式integral from n=a to b(f(x)dx)=integral from n=α to β(f[φ(t)·φ′(t)dt)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号